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Abstract

How do people trade off individual versus group welfare in the face of uncer-
tainty regarding private benefits of different actions? We propose a partial
information revelation (‘recommendation’) policy designed to maximize group
welfare, and we show its theoretical robustness to well-documented behavioral
deviations from the risk neutral, Bayesian, and self-interested benchmark. In
a large-scale online experiment with 2600 subjects, we then show that this
policy fails to improve upon a full information benchmark even when individ-
ual and group objectives are aligned, as the recommended course of action is
not followed often enough. In a setting where individual and group interests
clash, the recommendation is followed less often, largely by subjects who mis-
understand the policy. This provides suggestive evidence in favor of simplicity
in information design in multi-agent strategic settings.
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1 Introduction

Consider the problem when agents are asked to choose between objects or actions
with uncertain private costs or benefits, and their choices influence which options re-
main available for others. For example, suppose there is a limited supply of vaccines
which need to be allocated within a country. Individual factors that may or may not
be known (e.g., pre-existing conditions) introduce uncertainty to people’s decision
whether to take the vaccine, and this decision then affects the availability of the
vaccine to others. Suppose further that experts have access to research regarding
the disease, and can thus predict private benefits of the vaccine for the individuals
with greater precision than the people themselves (e.g., by correctly evaluating risk
factors). Finally, similarly to the Covid-19 pandemic, suppose nobody can be forced
to receive a vaccine, and a market for the vaccine is not permissible. In such a
situation, we ask: How much information regarding private benefits of the vaccine
should the experts reveal to the people if their objective is to maximize societal
welfare (i.e., make sure the vaccine is taken up by those who benefit the most from
receiving it, while others patiently wait their turn)?1

Building on the matching literature (Gale and Shapley, 1962; Abdulkadiroğlu and
Sönmez, 1998; Bogomolnaia and Moulin, 2001), we employ a model where agents
in the society are to be allocated, without monetary transfers, one of two options.2

Each option can accommodate a limited number of agents. The allocation process
is the following: the agents are randomly sorted into a queue, and then each agent
(he) is allowed to pick whatever option he likes among the remaining capacity of
each option once agents who are ahead of him in the queue have made their choice.
This is known as the random serial dictatorship mechanism (Abdulkadiroğlu and
Sönmez, 1998) as each agent at the moment of choosing acts as a dictator regarding
his choice. Such a procedure can be thought of as analogous to people waiting for
their turn to choose whether to receive a vaccine in a pandemic.3 While each agent
knows the distribution of payoffs from the options in the society, he cannot determine

1The essence of this problem, allocation of scarce objects among imperfectly informed decision
makers who could benefit from advice of an expert, extends to many other contexts: For example,
a school counsellor can advise parents which school would be a good fit for their child given similar
cases the counsellor observed in the past, or a researcher may suggest good fits between research
interns and tasks given her superior understanding of the nature of the tasks that need to be
performed.

2This makes our model particularly applicable to contexts where markets are impossible, un-
ethical, or impractical to set up. However, as shown by Azevedo and Leshno (2016), matching
situations can be modelled like "traditional" markets with demand and supply, allowing for a
derivation of comparative statics.

3By using a random ordering of agents rather than allowing the social planner to sort the agents
in the queue we are essentially requiring that our mechanism is robust to people attempting to
skip the queue, analogous to people in the pandemic using their personal connections to medical
professionals to access the vaccine earlier than their designated risk group.
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precisely which option is better for him personally. A benevolent social planner (she)
knows the best option for each agent - analogous to medical experts identifying risk
groups more precisely than the average citizen.4 She designs an information policy -
a signal structure, in the language of information design (Kamenica and Gentzkow,
2011; Bergemann and Morris, 2016) - to release just enough information to each
agent, so as to persuade him to pick the option she knows is the best for the group
(which may or may not align with what is best for him). This model is a simplified
version of the model in Dasgupta (2020).

As that paper shows, in our setting when the goals of individuals and the group
are aligned, which happens when agents do not have a strong pre-existing preference
for one of the two options, it is theoretically possible to achieve the planner’s first
best aggregate welfare. This can be achieved by simply recommending each agent to
pick the social welfare maximizing option. Each agent follows this recommendation
even though it need not be individually the best for him ex-post, as it maximizes his
interim expected payoff, based on the limited information conveyed to him by the
recommendation. On the other hand, such an informational intervention is theoret-
ically completely ineffective, i.e., does no better than not sharing any information
at all, when individual and group incentives are in conflict. Conversely as before,
that happens when agents have strong ex-ante preferences for one of the options.

We evaluate the robustness of these predictions both theoretically and experi-
mentally to known behavioral deviations from the baseline (risk neutral, Bayesian,
purely self-interested) model: We show that our proposed recommendation policy
remains welfare-maximizing when individual and group interests are aligned even
for risk averse or altruistic agents as long as they are not overly prior-biased in
their updating following the recommendation. When individual and group interests
are not aligned, we specify parameter bounds for which the policy remains welfare-
maximizing.

Our experiment is as follows: on Prolific, we randomly divide 2600 participants
into groups of four to play the aforementioned allocation game. There are two op-
tions for subjects to choose from, each of which can be chosen by precisely two
people. Subjects know their own payoff associated with one option, and the prob-
ability distribution over own payoffs associated with the other. In addition, the
subjects potentially receive more information about the second option, depending
on which information treatment they were allocated into: Full Info, Partial Info or
No Info. In our main treatment of interest, Partial Info, the subjects additionally
receive a computerized recommendation on which option to choose. Subjects know
that this recommendation is calculated with the intention to allocate people to op-

4In our baseline model, the social planner is assumed to have perfect information about the
agents’ preferences. However, our results extend to the case where she observes them with noise,
as long as the noise is not too large. See the end of Appendix section C.2.
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tions such that the aggregate social welfare (here: sum of total payoffs within their
group) is maximized. The other two between-subject treatments serve as natural
benchmarks: in Full Info, the subjects know precisely their payoffs from choosing
one or the other option, whereas in No Info the subjects receive only the basic infor-
mation described above, i.e., their own payoff associated with one option, and the
probability distribution and corresponding own payoffs associated with the other
option.

Subsequently, each subject reports their preferred option to the computer.5 The
four options are then allocated among the four participants according to the ran-
dom serial dictatorship mechanism described above. We are interested in how the
participants use potentially imperfect information to make their choices. By us-
ing within-subject variation of the payoffs associated with the second option, we
show the effects of this information setting when individual and group objectives
are aligned versus in conflict at the interim stage, i.e., once the subject sees their
recommendation.

We find that in general, around 71.5% of subjects choose the object they were
recommended; this number is higher whenever the recommended option is less risky,
or when it is both individually and collectively advantageous to follow the recom-
mendation. However, even in cases when individual and group objectives are aligned,
the recommendation-following rate is below that predicted by the theory.

In cases where individual and group interests conflict, we still observe 38.0% of
subjects follow a recommendation that is not in their individual interest. Interest-
ingly, this brings the resulting social welfare to the level of what is achievable by
simply giving each agent full information about his payoffs, which is more than the
level achieved when no information is shared.

Looking at why such a large share of subjects follow a recommendation that
favors group over individual welfare when these two are in conflict, we find that this
is largely attributable to the subjects’ misunderstanding of the game that manifests
as mistakes on our comprehension quiz, and, in some cases, can be identified from
the subjects’ self-reported strategies. However, neither mistakes nor other motives
we identify (such as desire to deliberately help one’s group at own expense) are
frequent enough to induce sufficient compliance with the optimal recommendation,
and so the aggregate welfare is not significantly higher in Partial Info than in the
benchmark case of No Info.

This motivates our final point: In a strategic setting, an information policy may
be designed to be optimal with respect to some objective (such as maximizing social
welfare), but agents might misunderstand the policy, resulting in individually sub-
optimal choices. Given the observed frequency of these misunderstandings, such

5For simplicity, our subjects make their decisions simultaneously and cannot observe the choices
of others. As such we therefore do not allow for any learning from others or coordination of actions.
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a policy then neither improves the aggregate well-being, nor benefits individual
agents. This suggests that simplicity properties of information policies may be worth
studying theoretically and empirically as part of the information design toolkit,
analogous to similar properties of mechanisms which are well-studied (Li, 2017;
Börgers and Li, 2019; Li and Dworczak, 2021).

Related literature. Our results contribute to three broad strands of literature:
the experimental literature on matching, information design for policy and the role
of advice in strategic environments. First, we provide a novel behavioral extension
to a model of matching with information design, and show how empirical regu-
larities such as risk aversion, imperfect Bayesian updating, or social preferences
affect decision-making in this setting. Most of the traditional matching experiments
literature assumes perfect information on the part of the agents about their own
preferences and focuses on comparisons across mechanisms in terms of strategy, sta-
bility and welfare, among others (Chen and Sönmez, 2006; Calsamiglia et al., 2010;
Klijn et al., 2013; Echenique et al., 2016; Castillo and Dianat, 2016). Hakimov and
Kübler (2021) provide a recent survey of this literature, focusing on school choice
and college admissions applications. Several papers consider the case of incomplete
information about others’ preferences. For example, Pais and Pintér (2008) and
Ding and Schotter (2019) study the impact of agents having varied levels of infor-
mation about others’ strategies on truth-telling and welfare in two-sided matching
settings. However, these papers do not consider the case where agents face uncer-
tainty over their own payoffs. Closest to our paper is the work of Chen and He
(2021), who compare how different school choice mechanisms incentivize students’
information acquisition when facing uncertainty about their own preferences. Exam-
ples of theoretical works studying similar questions include Immorlica et al. (2020)
and Artemov (2021). Also related are Neilson et al. (2019a) who, using a field ex-
periment, show that while more information on the schools shifts parents’ choices
towards better schools, capacity constraints reduce the positive impacts of this in-
formational intervention. This is fully consistent with our theoretical predictions,
though our experiment was not designed to capture this effect.

Second, we contribute to the behavioral and experimental information design
literature. While the theoretical literature on information design is now quite rich,
with very few exceptions, the notion is understudied in the lab. Relevant works
include Aristidou et al. (2019), who compares the mechanism and information design
approaches in the lab, and finds the information design approach to be more effective.
Incorporating reciprocity into the Bayesian persuasion model, Au and Li (2018)
show, using both theory and experiments, that when the prior belief indicates that
a good state is more likely, agents are more difficult to be persuaded, implying that
the designer’s optimal persuasion strategy involves more informative disclosure.

Most of the above literature focuses on the standard Bayesian persuasion set-
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ting featuring a single receiver, unlike our paper, which studies information design
in strategic environments. A notable exception is Ziegler (2023). He studies in-
formation design in a game in the lab and focuses on the effectiveness of public
vs private signals. In settings where players’ actions are strategic substitutes, the
optimally crafted private signal fails to realize its theoretically predicted gains over
the public signal, because it is followed less often than the latter. Ziegler (2023)
identifies “aversion to complexity and differential treatment” created by the private
signal as one of the channels contributing to the unwillingness to follow it. At a high
level, this result bears similarities to our finding that while theoretically, potentially
different, privately communicated recommendations are supposed to generate the
greatest gains, in the lab, the gains from such recommendations are about the same
as that from the more transparent signal.

In a separate experiment, Ziegler (2023) also studies sender behavior and finds
that it is quite similar to receiver behavior. Examples of other works within the ex-
perimental information design literature which do the same include Nguyen (2017);
Fréchette et al. (2022); Kwon (2020). In contrast, our “sender” is computerized and
not played by participants.

Finally, this paper also speaks to the experimental literature on the role of advice
in strategic environments (Koutout et al., 2021; Zhu, 2015; Guillen and Hakimov,
2018; Masuda et al., 2022; Braun et al., 2014). Closest to our work within this
literature is Guillen and Hing (2014), who evaluate the effects of both correct and
incorrect advice on participants’ strategies in a matching setting, and find that the
rate of following the correct strategy is highest when no advice is given and falls with
both correct and incorrect advice. Also closely related is Koutout et al. (2021), who
experimentally demonstrate the improvements strategic advice can bring about in
the same setting. Finally, Braun et al. (2014) study “strategy coaching” in their lab
experiment. The focus of much of this literature has been on the role of advice in
mitigating the strategic mistakes participants may make in these environments. Our
paper introduces a novel type of advice to this literature — namely one strategically
designed to help the group, not necessarily the individual. In fact, the heart of
our research problem is the non-trivial task of the participants of figuring out the
connection between these two.

2 Theoretical background

Now let us turn to our model.
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2.1 Baseline model

We use a standard model of allocating 2n, n ≥ 1, agents between m = 2 options,
without monetary transfers (see Hylland and Zeckhauser (1979), more recently e.g.,
He et al. (2018)), where the agents only know the joint distribution of their cardinal
preferences over these two options rather than the preferences themselves. Let us
call the set of agents I := {1, · · · , 2n} and that of the objects H := {A,B}. Each
option has a capacity to accommodate n agents, i.e., the two options in total have
exactly enough capacity to accommodate all agents.6

Let ui,h denote agent i’s utility from object h. Let ui denote his utility vector.
Each agent’s i’s utility vector lies in some compact set Ui = [u, u]2, u ≥ 0. The space
of cardinal preference profiles is U ≡ ×iUi = [u, u]2×2n, with its typical element
denoted by u. uis are distributed with joint prior probability measure µ over U . µ
is common knowledge.

The agents are to be allocated across the two options using the random serial
dictatorship (Abdulkadiroğlu and Sönmez, 1998) mechanism. Under this mecha-
nism, a ranking of all agents is chosen uniformly at random, and then each agent is
allowed to pick his favorite option from the remaining options after all agents ranked
ahead of him have already made their pick. Mathematically, this mechanism can be
represented as a mapping from agents’ jointly reported ordinal preference profiles -
i.e., profiles of their reports of which of the two options they like more, if any - to
distributions over joint allocations.

2.1.1 The planner’s problem

A benevolent planner or designer (she) wants to maximize the society’s expected
aggregate welfare, which we model as the sum of the expected utilities of the agents.
But – in a departure from the standard in the matching literature – she takes the
aforementioned allocation mechanism as given.

Instead of tweaking the mechanism, the way the planner achieves her objective
is by optimally choosing an information policy – a policy about how much infor-
mation to reveal to each agent about his and others’ preferences. Formally, we
model the planner as an information designer with full commitment,7 who chooses
a distribution over a set of signals for each realization of the preference profile u.

6The theoretical results used in our experimental design hold for a more general model with
any finite set of objects and agents, and where options could have varying capacities. We present
a simpler version of the model, since that is the set up we use for our experiment. See Dasgupta
(2020) for the general model.

7The commitment assumption is standard in the information design literature. Empirical evi-
dence suggests that, in school choice contexts, families largely see information about schools shared
by authorities as reliable, or true (Neilson et al., 2019b). We see this observation as lending sup-
port our commitment assumption. Theoretically, foundations for this assumption in organizational
contexts has been provided by Deb et al. (2023).

7



Because this distribution depends on the actual preference profile, it conveys
information about it without necessarily fully revealing it. In our context, the
strategy of the designer is to use this partial revelation of information to steer
agents towards joint reports she would like them to make to achieve her objective
of maximizing aggregate welfare.

For our baseline model we assume that the planner can choose the signal to be
as precise as she likes. We discuss in the Appendix (C.2) that our predictions hold
even if her designed signal is noisy, as long as the noise is below an upper bound,
which we also characterize.

2.1.2 The optimal information policy: The “recommendation” signal

We ask: What is an aggregate welfare-maximizing information policy in this
setting, and does it work as intended in practice?

If there exists an information policy that implements the pointwise maximum
aggregate welfare, i.e., a policy that can persuade agents to make joint reports to the
mechanism which maximizes aggregate welfare at each realized preference profile,
then such a policy is clearly optimal for the planner. We call the pointwise maximum
allocation the first best allocation.

It can be shown that such a policy exists if and only if agents do not have strong
opinions about the options a priori. Moreover, in that case the planner can achieve
the first best by simply privately recommending to each agent the option she would
like him to pick, at each realized preference profile - an information policy we call
the first best recommendation signal, hereafter called the recommendation.8

As mentioned above, the key to the first best being generally implementable is
that the agents must be sufficiently suggestible. For example, if an agent knows a
priori with probability one that object A is better for him than object B - even
though he does not know for sure the cardinal strength of his preference - no signal
can change his posterior preference to object B. This is an example of having very
strong a priori preferences - a condition which renders the recommendation unin-
formative, and therefore the first best not (generally) implementable. We formalize
this idea below.

Let ûi ≡ uiA− uiB denote agent i’s relative preference for A over B. For a given
utility profile u ∈ U , let rank(ûi) denote the rank of agent i when all agents in I

are sorted from highest to lowest according to ûi, i.e., rank(ûi) = r means there
are r − 1 other agents in the economy whose relative preference for A over B is
at least as strong as i’s. Suppose further that the prior measure is atomless. In
this setting, agent i is said to have a strong a priori preference for object A if
E(ûi|rank(ûi) ≥ n) > 0. In other words, agent i has a strong a priori preference for
A if, even when he knows that his relative preference for A over B is not among

8A version of this signal is called the Object Recommendation (OR) signal in Dasgupta (2020).
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the top half of the population, he still believes A is better for him than B. The
definition of a strong a priori preference for B is reciprocal.9

With the above background, Dasgupta (2020) shows the following:

Proposition 1 (Adapted from Corollary 4, Dasgupta (2020)). Suppose agents’ pref-
erences are iid and the prior is atomless. First best is achievable by random serial
dictatorship if and only if agents have no strong a priori preferences, in which case
it can be achieved using the recommendation.

Clearly, in our experimental set up, the prior is not atomless – it has a finite
support. However, it can be shown that Proposition 1 holds for arbitrary priors, with
a slightly more generalized definition of strong a priori preferences (see Appendix
D.1). That definition boils down to the one presented above when the prior is
atomless.

2.2 Parametrization of the baseline model

In what follows, we fix the remaining model parameters such that each of the
two options has capacity n = 2, which are to be allocated among a set of four (2n)
agents.

Option A is commonly known to have a value of 300 to all agents, whereas
option B may take values 100, 300, or 500 with probabilities 20%, 60%, and 20%
respectively (Scenario 1, where agents are sufficiently suggestible), or it may take
values 0, 200, or 400 with probabilities 20%, 60%, and 20% respectively (Scenario
2, where agents have strong a priori preferences).

We consider three information settings: No Info, Partial Info, and Full Info.
Under No Info, agents have no further information about their realized value of

option B prior to making their decision which option they prefer.
Under Partial Info, agents receive a Recommendation, i.e., information on which

option the social planner recommends them to pick given that it is known that
she aims to maximize aggregate social welfare. The agents also know that when
the planner is indifferent among multiple allocations - i.e., multiple allocations all
generate the same maximum aggregate payoff - she picks one uniformly at random
and recommends it to agents.

Finally, under Full Info agents know their own realized value of option B.

2.3 Theoretical predictions

In this section, we state the hypotheses we test in our experiment and provide
some intuition behind them. Formal proofs are provided in Appendix D.2.

9Agent i is said to have a strong a priori preference for object B if E(ûi|rank(ûi) ≤ n) < 0.
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Let W s
t denote the aggregate payoff (i.e., the sum of individual payoffs) of

all four participants in Scenario s and information setting t, i.e., s ∈ {1, 2} and
t ∈ {No Info, Partial Info, Full Info}. Also, let W s∗ denote the maximum possible
aggregate payoff possible in Scenario s. For each of our hypotheses, we make the
assumption of risk neutral, Bayesian, and purely self-interested agents.

Hypothesis 1 (Payoffs in Scenario 1). In Scenario 1, the aggregate payoff
is the lowest under No Info. It is strictly higher under Full Info. Finally, it is
the highest under Partial Info, which is equal to the theoretical maximum possible
aggregate payoff. That is, W 1

NoInfo < W 1
FullInfo < W 1

PartialInfo = W 1∗.

The intuition for why Full Info does better than No Info in Scenario 1, is as
follows: Under Full Info, at least two out of the four participants can maximize
their own payoffs – those ranked 1 and 2 under random serial dictatorship. In
contrast, under No Info, the expected payoff is constant across agents and objects.
Hence, no action by any agent can improve their own – or the group’s – interim
aggregate welfare.

As for the second part of the hypothesis why Partial Info achieves the first best:
Note that in Scenario 1, each agent is ex-ante indifferent between the two options,
because the expected payoff from B = 1

5
×100+ 3

5
×300+ 1

5
×500 = 300, which is the

same as the payoff from A. In other words, agents have no strong a priori preference
for either option, in the sense described in Section 2.1.2. Thus, in this Scenario, if
an agent knows that his allocation under one of the utilitarian welfare maximizing
allocations is A, and updates his expected utilities based on Bayes rule, a posteriori,
he prefers A over B, as outlined by Proposition 1. More intuitively, due to the high
suggestibility of each agent in this scenario, as captured by his ex-ante indifference,
this minimal “good news” about A is sufficient to tilt his posterior preference in
favor of A. This channel works for both objects. Therefore, per Proposition 1, in
this case the recommendation theoretically achieves the first best as agents follow
their Recommendations.

Hypothesis 2 (Payoffs in Scenario 2). In Scenario 2, the aggregate payoff
is the lowest under No Info, which is equal to that under Partial Info. It is strictly
higher under Full Info, which is, in turn, below the theoretical maximum possible
aggregate payoff. That is, W 2

NoInfo = W 2
PartialInfo < W 2

FullInfo < W 2∗.

The intuition for Hypothesis 2 is as follows: In Scenario 2, the agents’ ex-ante
expected payoff from object B = 1

5
× 0 + 3

5
× 200 + 1

5
× 400 = 200 < 300, i.e.,

agents have an a priori preference for object A. In fact, calculations show that this
a priori preference is strong enough so that the recommendation provides too little
useful information to agents. That is, even when an agent knows that he has been
allocated B under the utilitarian welfare-maximizing rule, this is not sufficient “good
news” to shift his a posteriori preferences to B. He still prefers A to B a posteriori,
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which is the same as his prior preference. Therefore, equilibrium outcomes with
the recommendation are the same as without any information. It follows that the
ex-ante social welfare should be equal in the No Info and Partial Info cases. As for
Full Info, it maximizes welfare for at least two out of the four participants, as in
Scenario 1, and thereby improves welfare over No Info.

Hypothesis 3 (Agent choices in Scenario 1 vs 2 in Partial Info). For
each participant, the acceptance rate of the recommendations in Scenario 1 is 100%
regardless of which object is recommended. In Scenario 2, it is 100% when the
recommended object is A and 0% when it is B.

Hypothesis 3 simply summarizes the predictions for individual behavior, which
follow directly from the arguments outlined above.

2.4 Behavioral extensions

Recognizing that our prior assumption of risk neutral, Bayesian, and purely
self-interested agents is unlikely to hold in practice, we outline several behavioral
extensions of the baseline model and use them to qualify our three key hypotheses.
Specifically, we consider risk attitudes, imperfect Bayesian updating, and social
preferences. We also run simulations to show the magnitude of the impact of these
deviations from the baseline model on group welfare.

We show that the agents’ risk preferences do not change our baseline predictions
for a wide range of parameter values. However, risk preferences do play a role when
agents are additionally prior-biased; specifically prior bias cannot exceed 60% for
our baseline predictions to hold across all risk preference profiles. Finally, when
agents have other-regarding concerns, we derive the conditions when they would be
willing to follow the recommendation even in Scenario 2, altering our Hypothesis 3
and, as a consequence, Hypothesis 2, as higher aggregate social welfare would be
reached in Scenario 2 under Partial Info in that case.

The details are in Appendix C.

3 Experimental design

To test our theoretical predictions, we conducted an online experiment. In this
section we first describe its general structure, and then detail all the tasks our
subjects completed. Implementation and power calculations are described in the
final two subsections.
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3.1 Experiment structure

Our experiment consists of two key stages: In the first stage, the subjects fa-
miliarize themselves with and complete the main task of interest: a choice between
two objects, A and B, in a matching setting as described in section 2.2. Between-
subject, we vary the amount of information (information setting treatment) the
subjects receive about the two options. Within-subject, we vary the possible payoffs
associated with option B (Scenarios 1 and 2). In the second stage, the subjects
complete a sequence of tasks designed to measure their underlying preferences and
background information to help us establish the reasons for their possible deviations
from predicted behavior.

All our subjects complete the experiment independently and without feedback
between tasks, and are only matched into groups of four ex post. As a consequence,
we can treat individual decisions as independent observations for the purposes of
Hypothesis 3, and group outcomes as independent observations for Hypotheses 1
and 2.

3.2 Experimental tasks

Upon entering the online interface, subjects are automatically randomized into
one of the three between-subject treatments: No Info, Partial Info, or Full Info.
These treatments only differ in the amount of information that is provided to the
subjects on the main task of interest.

Subjects start the experiment by reading instructions regarding their choice be-
tween objects A and B. In the experiment, we refer to this main task as a “game”,
and frame the choice as if the subjects were choosing between two different tasks as
workers.10 The subjects are shown a detailed example describing how the random
serial dictatorship allocation mechanism works in a group of four, and they com-
plete a practice decision with four comprehension questions. Subjects who make
a mistake on comprehension questions are nudged towards the part of instructions
that explains that particular concept, and are asked to resubmit their answer. The
number of mistakes on the comprehension quiz as well as the time spent on different
parts of the instructions is tracked.

The three treatments correspond to our theoretical benchmarks and provide the
following information to the subjects:

• No Info: Subjects know their payoff from choosing option A, and know the
probability distribution and the associated possible payoffs from choosing op-
tion B.

10Recent evidence suggests that the choice of frame does not affect outcomes to a large extent
(Abbink and Hennig-Schmidt, 2006; Engel and Rand, 2014).
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• Partial Info: Subjects have the same information as those in No Info, plus
receive a recommendation generated by the computer. The subjects know that
the computer calculates the set of utilitarian welfare maximizing allocations
given their realized payoffs from option B, picks one of them uniformly at
random, and makes the corresponding recommendations to all agents.11

• Full Info: Subjects know their exact payoffs from choosing tasks A and B.

After the subjects submit their chosen object, the computer randomly sorts
them into groups of four, orders them in a queue, and then assigns them their
preferred object in the order they were sorted as long as their preferred object is
still available.12

The subjects make two decisions (Scenarios) with the following parameters (also
discussed in section 2.2):

• [Scenario 1] Ex-ante indifferent prior: If a subject is assigned object A
at the end of the scenario, they get 300 points. If they get object B, they get
100 or 500 points, each with probability 20%, or 300 points with probability
60%.

• [Scenario 2] Strong preference: If a subject is assigned object A at the
end of the scenario, they get 300 points. If they get object B, they get 0 or
400 points, each with probability 20%, or 200 with probability 60%.

The preference distributions are i.i.d. across agents in both cases.
Without any feedback,13 the subjects proceed with follow-up tasks (see Figure 1).
The subjects’ payoffs are revealed at the end of the experiment, and payment

takes place electronically within two days of each experimental session.
11By design, we ensure that these recommendations are always correctly calculated. For a

discussion to what extent our theoretical predictions would change if errors were possible, see
section C.3.3.

12Notice that the subjects do not know their ranking at the time of making their decision; this is
done in order to maximize statistical power, as this way everybody’s decision potentially matters
for outcomes and truthful reporting of preferences is incentive-compatible. If the subjects did know
their ranking, all subjects ranked fourth in each group would know that their decision does not
matter for group outcomes, which could introduce (additional) noise into their decisions.

13This is done in order to minimize concerns about possible order effects: This way subjects
have no way of learning anything from Scenario 1 that they could use in Scenario 2. Likewise, we
prevent hedging across these decisions by making it clear to the subjects that only one decision
from the experiment is going to be paid.
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Instructions

No Info Partial Info Full Info

Demographic Questionnaire

Bayesian Task

Risk Preferences & Experimenter Demand Task

Social Preferences Task

Scenario 1
No Info

Scenario 1
Partial Info

Scenario1
Full Info

Scenario 2
No Info

Scenario 2
Partial Info

Scenario 2
Full Info

Practice Decision
No info - against computer

Practice Decision
Partial Info - against computer

Practice Decision
Full Info - against computer

Comprehension check
No info

Comprehension check
Partial Info

Comprehension check
Full Info

Feedback about All Tasks (Payoffs)

Figure 1: Sequence of tasks. Shaded columns indicate (between-subject) treatments.

The subjects first complete a Bayesian updating task (Mellers et al., 2017)14

and the Bomb Risk Elicitation Task (BRET) (Crosetto and Filippin, 2013). We
ask the subjects to complete the BRET twice, and the second time we provide
an explicit request how we would like the subjects to behave: we consider this
as an upper bound on experimental demand our subjects succumb to. Next, the
subjects complete a demographic questionnaire with an attention check, and a social
preference elicitation: We offer the subjects either a bonus for themselves, or for
everybody else in their group. By the nature of this elicitation, in what follows we
refer to subjects who opt for the bonus for others rather than themselves as altruists.
Finally, the subjects receive information about their earnings.

14We slightly changed the wording of the Bayesian updating task to minimize the probability
that subjects would find the answer by a Google search (Ludwig and Achtziger, 2021).
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3.2.1 Purpose of ancillary tasks

While our main hypotheses are written assuming agents are risk neutral, perfectly
Bayesian, and completely self-interested, we acknowledge that they are unlikely to be
(Brase and Hill, 2017; Harrison and Swarthout, 2022; Cochard et al., 2021; Fromell
et al., 2020). Guided by the experimental literature, we propose four main channels
that may be driving behavior that align with our theoretical discussion in Section
C: (1) risk aversion combined with lack of/insufficient Bayesian updating, (2) social
preferences, (3) experimenter demand, and (4) mistakes and misunderstanding by
subjects.

First, as discussed in sections C.1 and C.2, if people are risk averse and they
update their priors insufficiently, our prediction for Scenario 1 changes such that
subjects start ignoring the recommendation and choose the safe option instead. The
literature shows that while many people update their beliefs roughly in line with
Bayes’ rule (Coutts, 2019; Barron, 2021), there is a lot of individual heterogeneity
(Holt and Smith, 2009) and thus scope for deviations from optimal play. For this
reason, we measure the both subjects’ risk preferences and their ability to update
based on new information.

Second, as proposed in section C.3, since high levels of altruism can affect sub-
jects’ behavior in the experiment, particularly in Scenario 2, we measure subjects’
willingness to sacrifice their own payoff in order to benefit others in their group.

Third, subjects might deviate from “optimal” behavior due to experimenter de-
mand effects (Zizzo, 2010): We would expect some subjects to follow the recommen-
dation in an attempt to please the experimenter regardless whether they understand
the task, are able to update their beliefs, or care about the well-being of others.15

Alternatively, the subjects may defy the experimenter on purpose, doing exactly the
opposite of what they are asked. To bound the likely size of these effects, we repeat
our risk preference task (BRET) with direct experimenter instructions to behave in
a particular way, reasoning that subjects eager to defy or to please are likely to do
so across tasks.

Finally, like in any human activity, it is possible that our subjects make mis-
takes. Broadly, we can attribute mistakes to two possible reasons: inattention, and
misunderstanding. Fortunately, in a controlled experimental environment, we can
measure both: As a direct verification whether our subjects pay attention, we incor-
porate an attention check at the end of the experiment. This is because we would
expect subjects’ attention to decrease over time, and, to prevent any possible retali-

15More broadly, one could think of our recommendation as the experimenter’s way of communi-
cating a certain norm for behavior. However, as shown by Arroyos-Calvera et al. (2023), conveying
a behavior norm is not essential for a recommended action to influence behavior. This is consistent
with what our subjects self-report in their explanation of what motivated their choices: experi-
menter demand or any reference to an expected ‘norm’ of behavior were rare in our experiment.
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ation by subjects when they realize they are being “checked” whether they are doing
a good job (Paas and Morren, 2018). However, even if subjects do pay attention,
they might not fully understand the experimental instructions. For this reason, we
measure how many times subjects fail our comprehension quiz, and which parts of
the instructions they misunderstand.

3.3 Procedures

We obtained IRB approval from the University of Chicago (IRB21-1695), the
University of Amsterdam, and Nova School of Business and Economics, and pre-
registered the experiment at AsPredicted.org (https://aspredicted.org/yu65p.pdf).
Specifically, we pre-registered our hypotheses, outcome variables, and analyses of
the main hypotheses, and mechanisms we explore to study behavior deviating from
the theoretical predictions.

To check that our software was working properly, we ran a pilot session with
42 subjects in total; we do not use this data in our analysis. We conducted the
experiment on Prolific in August 2022, selecting subjects to be US nationals with a
Prolific approval rating of at least 90%. The analysis code can be found at
https://www.jantsje.nl/files/analysis_matching.html.

3.4 Power calculations

In our power calculations, we determined the minimum necessary sample sizes
to detect the average effect size in Scenario 1 in case the Partial Info treatment
outperforms the Full Info treatment with 80% power.

Under standard assumptions (α = 0.05, a two-tailed Wilcoxon rank sum test),
our setup thus requires at least 2220 subjects across the three treatments. For details
on how we averaged the effect sizes of interest, and auxiliary assumptions, please
see Appendix A.

4 Experimental results

In total, we collected data for 650 groups (2600 subjects),16 with 89 groups in No
Info, 281 in Partial Info, and 280 in Full Info. As pre-registered, we drop all groups
consisting of only subjects who did not complete the main part of the experiment
(Scenarios 1 and 2). Since dropping groups that contain a combination of some drop-
outs and some participants who finished would decrease our power under 65%, then,

16We recruited more subjects than our pre-registered minimum because we expected some sub-
jects to drop out, as is common in online experiments with the general population.
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as pre-registered, we keep these groups for the analysis.17 For the main analysis we
are therefore using data from 603 groups, split 80-262-261 between the No-Partial-
Full Info treatments, which is slightly more groups than the pre-registered desired
minimum. Appendix G.2 shows that the results do not change if we focus on groups
where all participants completed the experiment.

4.1 Descriptive statistics

Table 1 provides the summary statistics for the experiment. Across all treat-
ments, groups achieved higher social welfare in Scenario 1 than in Scenario 2, both
in absolute and relative terms, but this difference was the largest in Partial Info.
The majority of subjects chose the safe option A, with more choosing it in Scenario
2, but this share was higher in No Info. In the Partial Info treatment, the majority
of subjects followed the Recommendation, but fewer did so in Scenario 2.

Looking at subject characteristics, around 42.3% of our subjects were women,
and 7.6% students. The experiment took approximately 14 minutes, and average
earnings were 2.36 GBP.18 Around 9.4% of subjects re-checked the instructions after
reading them for the first time, but even then more than 63.3% of subjects failed at
least one comprehension check. Almost 49.0% of subjects failed our attention check
at the end of the experiment.19 Most subjects were moderately risk averse, but were
willing to increase their exposure to risk by almost one third (corresponding to about
12 boxes) when prompted to do so in our experimental demand task. Most subjects
also made mistakes on the Bayesian task, deviating from the correct answer by 13.4
percentage points (which is 22.3% of the correct answer, 60) on average. Less than a
third of the subjects (around 32.0%) behaved altruistically, i.e., chose to give money
to others in their group rather than keep it for themselves.

The Balance Table (G1) is reported in the Appendix.
17Following our pre-registration, if a subject dropped out of the experiment before completing

one or both of the Scenarios of interest, their choice is randomly determined by the computer
(so that group outcomes can be calculated). These randomly assigned choices are not used for
individual-level analysis (Hypothesis 3). From now on, we refer to these computer-assigned choices
as ‘bots’.

18At the time of the experiment, this average payment corresponded to 140% of the Prolific
minimum-wage rules for experiments.

19We consider this an upper bound on the number of subjects not paying careful attention for two
reasons: First, the attention check question was not incentivized, unlike the rest of the experiment.
Second, the attention check was at the end of the experiment (in order not to anger subjects that
they are “monitored”), and attention is likely to decrease over the course of the experiment.
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Table 1: Summary Statistics

Full Info Partial Info No Info

Scn 1 Scn 2 Scn 1 Scn 2 Scn 1 Scn 2

Main outcomes:
Aggregate welfare 1278 1077 1262 1031 1195 1010
(sd) (182) (186) (168) (184) (183) (168)
... as % of max 93.92 92.47 93.15 89.02 89.70 87.89
(sd) (8.15) (10.65) (9.12) (12.88) (11.09) (11.43)
% choosing A 59.68 76.24 55.78 78.79 66.42 86.35
% following recommendation - - 74.13 67.02 - -

Subject characteristics:
Completion time (min) 13.26 14.20 14.14
Risk aversion 58.14 59.22 60.70
Experimenter demand 11.73 11.65 13.52
Bayesian deviation 13.00 13.50 14.82
% female 42.28 43.12 39.61
% student status 6.13 9.10 7.06
% instructions check 10.41 8.13 10.20
% instructions failure 60.57 65.76 63.92
% attention failure 47.75 49.73 50.59
% altruist 28.06 29.90 28.78

Note: Main outcomes of interest are reported for every within- and between-subject treatment (Sce-
narios 1 and 2, and Full/Partial/No Info). Aggregate welfare refers to group outcomes, whereas shares
of subjects choosing a specific strategy are calculated on an individual level. Individual-level statistics
do not include choices determined by the computer for subjects who dropped out.
Subject characteristics are reported for every between-subject treatment on an individual level. Com-
pletion time refers to the total number of minutes a subject took to complete the experiment, and
is reported only for subjects who completed the experiment. Share of instructions check, instructions
failure, and attention check refers to the share of participants who went back to re-read the instructions,
who failed the instructions comprehension quiz, or who failed the attention check, respectively. Risk
aversion refers to (100 - the number of boxes collected on the BRET task), such that higher values
mean higher risk aversion. Experimenter demand is measured as the total increase in the number of
boxes collected on the BRET task with explicit experimenter instructions as compared to our first task
without any nudges about “correct” behavior. The deviation from Bayesian updating on our cookie
task is listed as the absolute difference in probability reported and the Bayesian estimate. Finally, we
report the percentage of subjects who chose to sacrifice their own payoff and instead benefit others in
their group (altruist).
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4.2 Main results

Our analysis matches our pre-registration unless noted otherwise. Exploratory
(non pre-registered) analyses are listed in the next section.

Since our Hypotheses 1 and 2 involve a sequence of inequalities to compare social
welfare levels across treatments, we run the Jonckheere-Terpstra trend test, and ver-
ify every pairwise inequality with the Mann-Whitney-U test (see Table 2). As that
table shows, we find partial support for our Hypothesis 1 with the aggregate welfare
being statistically indistinguishable in the the Partial and Full Info treatments in
Scenario 1, but significantly lower in the No Info treatment. Additionally, we find
convincing support for our Hypothesis 2 with the Full Info treatment outperforming
both Partial and No Info in Scenario 2, which are in turn yielding equal aggregate
welfare. These results are visualised in Figure 2.

To compare welfare levels to the specified theoretical maximum, we use the
one-sample version of the Wilcoxon sign rank test (see Table 3). Contrary to our
theoretical predictions, the Partial Info treatment does not reach the first best in
Scenario 1. Likewise, the Full Info treatment does not reach the first best in Scenario
2, in line with our Hypothesis 2. Both of these results can be clearly seen in Figure
2, with the first best benchmark being represented by the dashed line.

Table 2: Treatment Effects on Social Welfare

All comparisons Full vs. Partial Partial vs. No Full vs. No

(Jonckheere-Terpstra) (Mann-Whitney-U)

H1: Partial > Full > No
0.082 0.218 0.002∗∗ 0.000∗∗∗

[0.096] [0.005] [0.002]
H2: Full > Partial = No

0.000∗∗∗ 0.005∗∗ 0.381 0.005∗∗

[0.005] [0.146] [0.005]

N (groups) 603 523 342 341

Note: The first column lists p-values from the Jonckheere-Terpstra trend test for the ordered aggre-
gate social welfare levels, and columns 2-4 list p-values for two-sided pairwise comparisons using the
Mann-Whitney-U test.
* p-val< 0.05, ** p-val < 0.01, *** p-val < 0.001

Sharpened false discovery rate q-values for the six pairwise tests (Anderson, 2008) are in brackets.

19



1000

1050

1100

1150

1200

1250

1300

1350

No Info Partial Info Full Info

 (a) Scenario 1

Aggregate Social Welfare

800

850

900

950

1000

1050

1100

1150

No Info Partial Info Full Info

 (b) Scenario 2

Aggregate Social Welfare

Figure 2: The figure plots the aggregate social welfare reached in Scenarios 1 and 2
with 95% confidence intervals. The dashed line indicates the theoretical maximum
aggregate welfare (first best) that can be achieved in expectation.

Table 3: Reaching first best

Scenario 1 Scenario 2

H1: W∗ = Partial H2: W∗ > Full
0.000∗∗∗ 0.000∗∗∗

[0.001] [0.001]

N (groups) 262 261

Note: The table lists the p-values for the one-sample two-
sided Wilcoxon sign rank test, comparing the treatment that
was hypothesized to equal (Scenario 1) or fail to reach (Sce-
nario 2) the aggregate social welfare optimum to the theo-
retical first best.
* p-val< 0.05, ** p-val < 0.01, *** p-val < 0.001

Sharpened false discovery rate q-values for the two tests
(Anderson, 2008) are in brackets.

As a robustness check, we randomly reshuffle subjects in groups such that within
each group, we allow for all possible orderings of subjects and thereby all possible
orderings whose decisions are consequential for the group outcomes. (Recall that
the subject ranked 4th has no power to influence own or group outcomes.20) We plot
the aggregate social welfare levels for each reordering (see Figure 3), showing that
our results are generally stable with one exception: in the majority of alternative
subject reshufflings under No Info in Scenario 2 the social welfare is lower than in our

20This method is in the spirit of Mullin and Reiley (2006).
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Figure 3: The figure plots the aggregate social welfare reached in Scenarios 1 and
2 under different subject reshufflings within groups. The dashed lines indicate the
average social welfare levels achieved in our default ordering of subjects.

original dataset. In the 23 additional pairwise (Mann-Whitney-U) tests where we
compare the aggregate social welfare in Scenario 2 under partial vs. no information,
we find a significant difference in 4 reshufflings (17%). This is more than would be
expected by pure chance (5%), and so we see it as a qualification of our result from
Table 2, suggesting that there might be groups that slightly benefit from partial
information as compared to no information even in Scenario 2.

Based on the above results, we conclude that in Scenario 1, where following
the recommendation is theoretically optimal, the Partial Info and the Full Info
treatments result in the same level of aggregate social welfare, which is below the
first best. Both of these treatments outperform the No Info benchmark. In Scenario
2, where subjects have a strong a priori preference for object A, Full Info outperforms
both the Partial and No Info treatments, both of which result in the same aggregate
welfare levels, albeit we have suggestive evidence that the Partial Info treatment
may be marginally better for subjects than the No Info treatment. Finally, also in
this case, the Full Info treatment does not reach the first best.

Moving on to our Hypothesis 3 regarding individual behavior, we use the one-
sample Mann-Whitney-U test to see whether the share of people following each type
of recommendation corresponds to the predicted share. Since this analysis is on the
individual level, we directly exclude subjects who did not complete one or both of
the treatment scenarios and their choices were replaced by a random choice (‘bots’),
since we maintain sufficient power. To establish whether hint following behavior
differs across scenarios, we use the within-sample Wilcoxon sign-rank test. All of
these results are reported in Table 4.
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Table 4: Following the Recommendation

Scenario 1 Scenario 2 Scenario 1 vs. 2

H3: always follow H3: only follow A
% follow 74.13

0.000∗∗∗

[0.001]
% follow A 79.62 95.38 -15.76

0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

[0.001] [0.001] [0.001]
% follow B 68.52 38.12 30.40

0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

[0.001] [0.001] [0.001]

N (subjects) 943 943 943

Note: The table lists the average share of subjects who follow the Recommendation in
the Partial Info treatment and the associated p-values for comparisons w.r.t. theoretical
benchmarks (columns 1 and 2) and between scenarios (column 3). We do not run the
aggregate test for hint following (row 1) in Scenario 2 since the theoretical prediction
depends on the realized share of subjects receiving each recommendation; we therefore
only test conditional on realized recommendations (rows 2 and 3).
* p-val< 0.05, ** p-val < 0.01, *** p-val < 0.001

Sharpened false discovery rate q-values for the seven tests (Anderson, 2008) are in
brackets.

As the above table makes clear, subjects do not always behave in line with
the theoretical predictions: In Scenario 1 and for cases of A recommendation in
Scenario 2, they do not (sufficiently) follow the recommendation even though it
is in their interest, whereas in Scenario 2 in case of a B recommendation they
follow the recommendation even when it is not in their private interest. However,
recommendation-following is in the aggregate higher in Scenario 1, and this is driven
by subjects following recommendation B. Interestingly, recommendation-following
of A is higher in Scenario 2, even though it should theoretically be equal in both
Scenarios.

Finally, we move on to the mechanisms why subjects behave this way.
First, we investigate which strategies the subjects pursue given the informa-
tion/recommendations they received. In Table 5 below, the actions taken by the
subjects (one in each Scenario) are indicated by columns, while the information
received by them are along the rows. In case of Full Info, instead of recommen-
dations received, we break the sample down based on which action would result in
higher expected payoff for the subject, since the exact payoffs each option offers are
known. In case of equal payoff for options A and B, we use =. Individually rational
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payoff-maximizing choices, assuming no social preferences, are highlighted in bold.

Table 5: Strategies Played

Actions taken

AA AB BA BB

No Info:
164 16 70 21

Partial Info: Recommendations received
AA 225 1 43 9
AB 96 57 35 10
BA 64 2 122 10
BB 66 15 92 96

Full Info: Highest expected payoff
AA 113 16 6 6
AB 7 29 1 1
BA 15 5 128 8
BB 1 4 6 36
=A 266 18 119 18
=B 32 49 15 31

N (subjects) 1049 212 637 246

As Table 5 shows, the majority of subjects behave in accordance with the the-
oretical predictions of Bayesian, self-interested profit maximizers. In the Full Info
treatment, most (82.9%) subjects choose the individually payoff-maximizing object.
In contrast, 56.7% of subjects do so in the Partial Info treatment. In No Info, the
individually optimal payoff-maximizing option depends on risk preferences: a full
86.3% of subjects play strategies consistent either with risk aversion or risk neutral-
ity (AA or BA), which is largely consistent with past experimental research on risk
preferences.

In order to investigate why some subjects deviate from our theoretical predictions
in the Partial Info treatment, we estimate a logit model to see how our proposed
channels influence decisions.21 As Table 6 shows, by far the strongest predictor
of subjects’ choices was the recommendation that they received. In Scenario 1,

21In the Appendix Table G2, we examine the results as a sequential logit to see how the our
proposed channels influence decisions at different stages (Buis, 2013). The results are similar to
the simple logit presented here.
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those who were recommended A were almost twice as likely to make the theoreti-
cally optimal decision, i.e., follow their recommendation. This effect was even more
pronounced in Scenario 2 where only following the recommendation of A was indi-
vidually optimal: those who received the recommendation of A were now fourteen
times more likely to follow it. Once we include controls for our proposed mecha-
nisms, we observe that subjects who made mistakes on the game comprehension
quiz are only about half as likely to make the optimal decision in Scenario 2. The
raw data confirm the pattern that those who misunderstood the instructions are
less likely than those who understood (76.9% versus 84.8%) to make the optimal
decision in Scenario 2 (Fisher’s Exact Test, OR = 1.67, p = 0.005). There is no dif-
ference between those who misunderstood (57.0%) and those who did not (53.5%) in
optimal decisions in Scenario 1 (Fisher’s Exact Test, OR = 0.87, p = 0.328). This is
relatively unsurprising, since the optimal strategy in this Scenario is arguably more
complex than in Scenario 1 (i.e., involves following some recommendations and not
others).

In an exploratory analysis (see columns 5 and 6 of Table 6), we specifically show
that the sub-optimal choices in Scenario 2 are primarily taken by subjects who made
errors on comprehension questions 3 and 4 prior to the experiment; i.e., they either
do not understand that it is in their interest to truthfully report their preferences
(Q3), or do not understand the information setting (treatment) they are assigned
to, and thus likely misunderstand the information they are given about option B.
This is also apparent in the raw data, as reported in Table 7.

Additionally, we observe that altruistic subjects are also less likely to make the
optimal decision in Scenario 2, which is consistent with our theoretical discussion in
Section C.3. However, we do not find robust support for altruism driving optimal
behavior in either scenario based on raw data (Fisher’s Exact Test, ORScenario1 =

1.03, pScenario1 = 0.935, ORScenario2 = 1.13, pscenario2 = 0.487). For this reason we
caution against placing too much emphasis on the significant coefficient of altruism
in Table 6.

Quite remarkably, we find no disproportionate preference for the safe object A
among those subjects who are both risk averse and bad at Bayesian updating, even
in Scenario 2.

Finally, we find no evidence that either experimenter demand or inattention are
driving our results, as these do not seem to influence the probability that a subject
makes the optimal decision.
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Table 6: Optimal Choices across Scenarios: Partial Info

Scenario 1 Scenario 2

Recommended A 1.745*** 1.697*** 14.391*** 16.065*** 15.564*** 16.725***
(0.158) (0.159) (0.267) (0.266) (0.276) (0.274)

Risk averse 1.005 1.015 1.014
(0.006) (0.008) (0.008)

Non Bayesian 1.025 1.043 1.042
(0.016) (0.027) (0.028)

Risk averse × non-Bayesian 1.000 0.999 0.999
(0.0003) (0.0004) (0.0004)

Inattention 0.949 0.904 0.941
(0.159) (0.194) (0.197)

# attempts comprehension Qs 1.328 0.526**
(0.163) (0.215)

Altruist 1.013 0.637* 0.629*
(0.173) (0.207) (0.209)

Experimenter demand 1.006 1.001 1.000
(0.005) (0.006) (0.005)

Failed comprehension Q1 1.034 1.080
(0.192) (0.159)

Failed comprehension Q2 0.904 0.885
(0.190) (0.195)

Failed comprehension Q3 0.655** 0.634**
(0.138) (0.141)

Failed comprehension Q4 0.632* 0.659*
(0.188) (0.195)

N (total) 869 869 869 869 869 869

Note: The table shows the odds ratios for making the theoretically optimal choices in the Partial Info treatment.
Optimal strategies follow the Recommendation in the first Scenario, and select A in the second Scenario. Only
subjects who completed all ancillary tasks are included.
Q1 = suppose you would have chosen the other task, how much would you have earned?, Q2 = suppose two players
ahead of you would have chosen task A too, would you have been allocated A?, Q3 = could player 4 improve their
payoff?, Q4 = I will know the exact payoff of B (correct answer is treatment-dependent)
Simple logit estimation.
Robust standard errors are in parentheses. Clustering on individual level.
* p-val< 0.05, ** p-val < 0.01, *** p-val < 0.001
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Table 7: Choices of subjects who misunderstand in Partial Info

Wrong at least once Of those with a wrong answer...
chose A in Scenario 1 chose A in Scenario 2

Q1 12.2% 49.6% 82.3%
Q2 23.9% 59.3% 78.7%
Q3 36.9% 57.8% 74.8%
Q4 29.0% 56.0% 74.6%

Overall 63.3% 56.0% 76.2%

Note: Table indicates the percentage of subjects who answered specific comprehension
questions wrong (first column) and decisions of those subjects in Scenario 1 (second
column) and Scenario 2 (third column).
Q1 = suppose you would have chosen the other task, how much would you have earned?,
Q2 = suppose two players ahead of you would have chosen task A too, would you have
been allocated A?, Q3 = could player 4 improve their payoff?, Q4 = I will know the exact
payoff of B (correct answer is treatment-dependent)

4.3 Exploratory analysis: Self-reported strategies

To shed more light on the subjects’ motives, we provide a descriptive analysis of
their self-reported strategies in the experiment.

Following Scenario 2 in the experiment, we asked our subjects to explain in words
their reasoning for the choices they made. We hired two research assistants, blind to
our hypotheses, to manually classify22 their responses into categories that correspond
to our pre-registered mechanisms of interest for the Partial Info treatment:

• Risk preferences: Differentiate whether subject chose the safe option (sug-
gestive of risk aversion), the risky option (suggestive of risk seeking), or
engaged in a risk/benefit calculation (suggestive of some sophistication in
decision-making).

• Altruist: Indicate whether subject made a decision with the intention to
benefit others.

• Experimenter demand: Differentiate whether subject made a decision with
the intention of pleasing the experimenter (suggestive of positive experimenter
demand) or indicated opposing the recommendation given in an effort of mak-
ing their “own” decision (suggestive of negative experimenter demand)

• Mistake/misunderstanding: Indicate whether the subject’s response sug-
gests that the person misunderstood the rules, was incorrectly using the in-

22The research assistants independently hand-coded the self-reported reasons of subjects for
choosing objects A or B; they discussed cases of disagreement in their coding afterwards. The
analysis in this section uses their collective agreed-upon classification.
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formation provided (e.g., was misinterpreting the recommendation), or was
making a similar type of error.

• No explanation: Indicate whether the subject failed to provide an explana-
tion for their choice.

• Other: Indicate whether subject listed other reasons for their choice (e.g.,
chose an option randomly).

Overall, 62.5% of the subjects explained their decision depended on their risk
preferences; of these, the majority reported they weighed the risks and benefits of
the two options (57.7%), while about a third (37.5%) indicated that they simply
chose the safe option. Only a small share of subjects indicated they simply chose
the risky option (4.8%). Recall from Section 2.4 our theoretical prediction that risk
preferences matter only for (sufficiently) prior-biased agents; however, we find no
support in the data that these subjects who considered their risk preferences are
any better at the Bayesian updating task than the other subjects (Wilcoxon rank
sum test, p = 0.754). We therefore point to these self-reports as symptomatic of a
particular type of mistake: either not updating correctly, or not even realizing that
one should update following the recommendation.

The second most common category of reasons given was “other” (10.9%); this
included explanations such as “choosing the best option” without explaining what
“best” meant, or relying on “gut feeling”. Other reasons provided were relatively
uncommon, such as appeals to altruistic motives (0.7%) or experimenter demand
(0.3%). 1.8% of the subjects failed to provide an explanation for their choice.

Finally, only (0.8%) of subjects provided an explanation that could be directly
identified as a reasoning mistake or confusion. Unsurprisingly, all of these subjects
also failed at least one question in our comprehension test, with Q4 being the most
common mistake. However, their responses do not provide us enough detail to say
anything further about what specifically they do not understand.

On top of these categories, the research assistants also indicated whether the
subject mentioned they followed their recommendation (26.6%), took it into consid-
eration (21.3%), or ignored it (49.7%). In cases the subjects did not mention the
recommendation at all, the research assistants coded such responses as ignoring the
recommendation.

Of those subjects who mentioned they followed the recommendation they were
given, the majority (82.3%) did not mention any other reason for their choice. Of the
subjects who mentioned at least one reason for their choice, by far the most common
argument mentioned was that the subjects weighed the risks and benefits associated
with each option. Other reasons for making choices were rare, including altruism
and experimenter demand. Notice that these numbers are conservative since we did
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not provide the subjects with any possible options to explain their choices; these are
reasons the subjects came up with on their own.

Taken together, we believe this provides additional nuance to our earlier findings:
While there is a share of subjects who simply follow the recommendation they are
given without feeling the need to come up with their ‘own’ reasons for an action;
most subjects think carefully about the problem and try to weigh the risks and
benefits associated with each choice. However, we have few reasons to believe that
the subjects engage in “correct” analysis (from the perspective of Bayesian updating
and our model). Rather, the data and the self-reports point to the fact that subjects
take mental shortcuts and do not properly internalize all information available to
them.

5 Discussion

In this study, we have investigated, both theoretically and empirically, how peo-
ple process and use information signals in an environment where individually and
societally optimal actions do not necessarily align. We make three key observations:
First, in contrast to theoretical predictions, a recommendation provided by a knowl-
edgeable social planner in an incomplete information setting does not achieve first
best aggregate welfare, even in the case where individual and societal objectives
are aligned. However, in this case a recommendation signal improves social welfare
over a no information setting. Second, in situations where individual and societal
objectives clash, a substantial share of subjects follow the recommendation they
received, benefiting their group. These decisions do not seem to be driven by social
preferences, inattention, or experimenter demand; rather, it is subjects who struggle
to understand the game who make the individually sub-optimal choice. And third,
full information provision does no worse than the recommendation signal when in-
dividual and societal objectives are aligned, and outperforms it otherwise.

Our findings are relevant to settings where experts decide on a public advisory
policy geared to aid the allocation of scarce resources (e.g., vaccines) among people
with heterogeneous private benefits, in the absence of a market (e.g., for ethical
reasons). They suggest that, while full information revelation does result in some
inefficiency due to limited resources, an optimally crafted recommendation policy
may not be able to counter this inefficiency enough, as it is not followed by a large
enough share of the population.

The most relevant channel for the aforementioned deviation from the theoretical
prediction that we find, is the subjects’ misunderstanding of the game. In particu-
lar, those who made mistakes on our comprehension quiz were less likely to make
the optimal decision in the cognitively more demanding case (Scenario 2) where in-
dividual and societal objectives clash. However, in light of the known result that in
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strategic environments, even correct strategic advice often fails to convince players
to follow it (Guillen and Hing, 2014; Guillen and Hakimov, 2018; Braun et al., 2014;
Koutout et al., 2021), we recognize that there may be additional channels driving
the deviations (e.g., see Rees-Jones et al., 2020), which represent promising avenues
for future research.

Our main insight from the above finding, however, is as follows. The notion
that not all incentive compatible mechanisms are easily understood to be so by real
world players is well established in the mechanism design literature, both theoreti-
cally and experimentally (Kagel et al., 1987; Chen and Sönmez, 2006; Klijn et al.,
2013; Li, 2017; Li and Dworczak, 2021). Various more restrictive notions of in-
centive compatibility which accommodate for this limitation have been suggested,
such as obvious strategyproofness (Li, 2017) and simplicity (Börgers and Li, 2019;
Li and Dworczak, 2021). Our experimental findings provide evidence in favor of
an analogous insight for information design – in strategic environments, all obedient
(Bergemann and Morris, 2016) information policies need not be understood as such
by real world agents. As an avenue for future research, it would be interesting to
explore simplicity-focused theoretical notions of obedience.

Appendix

A Power calculations

We use simulations to guide our sample size choice for the experiment. Our key
starting point is that for the recommendation to be a relevant policy, it needs to
deliver welfare improvements over the next best-case alternative, which in this case
is Full Info.

Building on our theoretical background, we propose three types of common be-
havioral deviations from optimal (Bayesian, risk neutral, self-interested) strategy in
the two scenarios of interest:

1. Always follow: Subjects who always follow the recommendation, regardless
of the payoff distributions they face. As argued in Sections C.3 and C.3.3,
such behavior could be consistent with high levels of altruism or experimenter
demand.

2. Always opposite: Subjects who always do the opposite of what the recom-
mendation suggests. Analogously as above, this could result from reverse
experimenter demand effect – a tendency to defy the experimenter on purpose
– or negative altruism (spite).23

23As we note in Section C.3 in the Appendix, spite must be sufficiently high – in a sense made
precise in Section C.3 – for this effect to come into play.
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3. Always safe: Subjects who always select the certain/safe option.24 As shown
in Section C.2, such behavior would be consistent with a high degree of prior
bias combined with risk aversion.

We proceed by simulating the behavior of 2500 groups (10 000 agents) assum-
ing that different shares of the agents play either the (Bayesian, risk-neutral, self-
interested) optimal strategy, or one of the three alternatives above. For example, we
thus simulate the resulting aggregate social welfare when 20% of the agents play the
optimal strategy, and 80% play always safe. We contextualize these by also showing
the aggregate welfare under Full Info, and the minimum and maximum welfare that
can be reached by forcing the agents to accept the welfare-maximizing/minimizing
allocation.

Based on these simulations (depicted in Figures C2, C4, and C5), Partial Info
outperforms Full Info in terms of aggregate welfare if sufficiently many subjects
follow the recommendation. This is true even in Scenario 2, where subjects have
a strong preference for the safe object. Depending on which type of “alternative
strategy” we look at, the key threshold is around 70% or 80% of the agents following
the recommendation.

Since we are primarily interested in Scenario 1 where the use of the recommen-
dation is desirable, we average the effect sizes across the three cases at points where
either 80% or 100% of subjects follow the recommendation. Based on this average
effect size, we calculate the required number of groups in the Partial and Full Info
treatments. We use GPower (Faul et al., 2009), and assume α = 0.05, power of
80%, a two-tailed Wilcoxon rank sum test, and a normal parent distribution. Taken
together, we calculate the target effect size to equal 0.25, giving us a required N=257
groups of subjects per each of these two treatments.

To calculate the required sample size for the No Info treatment, we proceed
in three steps: First, we simulate subjects’ behavior in the No Info treatment,
varying the share of subjects who choose the safe option vs. those who maximize
expected value. (Notice that in Scenario 1, this implies choosing randomly, since
both options have the same expected value.) This is shown in Figure A1. Second, to
be conservative, we aim for 80% power to detect whichever effect size is smaller : that
comparing Full Info and No Info, or that comparing Partial Info and No Info. Since
in our cases of interest Partial Info outperforms Full Info, we therefore calculate the
effect size of interest based on the 80% and 100% cases for Full Info and No Info.
This gives an average effect size of 0.495. Third, we take into account that we are
already using 257 groups for Full Info, and we can thus allow for a smaller number
of groups in No Info. Setting the ratio of sample sizes to 1:5, we end up with 41

24Note that theoretically, we could also distinguish an Always risky type, i.e., subjects who
always select the risky option; however, given that most subjects tend to be risk-averse (Harrison
and Rutström, 2008), we do not consider this a likely situation.
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groups in the No Info treatment.25
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Figure A1: Average group welfare across scenarios and types of agents, No Info. It
varies shares of subjects who choose to always select the safe option in pink (circles).
We plot the Full Info in orange (squares), and the group maximizing (grey, upward
pointing triangles) and minimizing (green, downward pointing triangles) outcomes.

Finally, we again consider the three cases of interest with either 80% or 100%
of subjects behaving optimally, and we find the average effect size for Scenario 2.
Taking the number of groups per treatment as given, we calculate the implied power
to equal 99.97% for Full Info vs. Partial Info, and 77.34% for Full Info vs. No Info.

Taken together, we aim for at least 2220 subjects across the three treatments,
with 257 groups in Full Info and Partial Info and 41 groups in No Info.

25We end up having more power than 80% in practice, since we end up with more groups in Full
Info than the calculation requires.
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B Experimental instructions

 

 

 

 
Welcome 
 
Welcome page, including 
information about payoffs and 
the random selection 
mechanism.  

 

 

 
Instructions (1) 
 
First set of instructions, 
participants can navigate with 
next and previous buttons. 
 
 
 
 
 
 
 
 
 
 
 

 

 
 Instructions (2) 
 
 
 

 

Instructions (3) 
 
Text in grey bar differs across 
treatments. Here: Partial Info 
treatment 
 
No Info: “The computer will give 
you no information about your 
or anyone else’s value.  
 
Full Info: “The computer will give 
you private information about 
your true value of Task B. You 
will not learn your group 
members' values.” 
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  Instructions (3a) 
 
Only shown in the Partial Info 
treatment.  
 
Second half of page is only 
shown when Read more  button 
is clicked.  
 

 

 
 Instructions (4) 
 
 

  
 Instructions (5) 
 
Final page of instructions, 
including an answer to a 
frequently asked question.  
 
More information (4 bullet 
points) only shows when the 
check what happens if you would 
button is clicked. 
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Practice Decision 
 
A pop-up screen with 

instructions is always available 
via the right top button.   

 
 
 
 
 
 
 

  No Info 
 
 
 
 
 
 
 
 
Partial Info treatment 
 
 
 
 
 
 
 
 
 
 

 
 
Full Info 
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Results of the Practice Decision 
 
Showing the preferences and 

allocations of the other players 
(computerized) and the 
participant (player 3).  

 
 
 
 
 
 
 
 
Comprehension Questions are 

shown one-by-one on the same 
page after button click.  

 
 
 
 

 
 

 
 
 
 
 

Comprehension Questions 
 
Software counts the number of 
attempts. Correct answer 
currently selected, except for 
question 4/4, which depends on 
treatment: 

- No Info: The distribution 
(possible payoff + likelihood of 
being selected) 
- Partial Info treatment: No info 
+ the computer will give a 
recommendation 
- Full Info: The exact payoff in 
points 
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 Decision 1 
 
After Decision 1, a large yellow-
pop up indicates that a new 
independent decision is coming 
up.  
 
Decision 2 is almost indentical to 
Decision 1, except for lower 
valuations [0, 200, 400] versus 
[100, 300, 500]. 
 

 
 
No Info 
 
 
 
 
 

 
 
Partial Info treatment 
 
 
 
 
 
 
 
 
 
 
 
 
Full Info 
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Strategy 
 
Self reported strategy. Under Partial 
Info treatment, one sentence is added:  
For example, how did you use the 
recommendation (if at all)? 
 
 
 
 
 
Bayesian task 
 
Correct answer: 60%.  
Based on Mellers et al. (2017) 

http://sjdm.org/journal/17/
17408/jdm17408.pdf 

  
   
 
 
 
 
 

  
Instructions Risk Elicitation Task  

 
Bomb Risk Elicitation Task for oTree by 
Holzmeister & Pfurtscheller (2016) 
http://dx.doi.org/10.1016/ 
j.jbef.2016.03.004   
 

  
 
 
 

Risk Elicitation Task  
 
Participants can use the arrows or 
simply type to select a number of 
boxes to be opened.  
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Experimenter Demand Task 
 
Participants are asked to do the Box 
Collecting Task again and to open as 
many boxes as possible. When they 
open more than in the previous round, 
we take this as a signal of experimenter 
demand. 

 

   

 Final Questionnaire 
 

Questions: occupation, 
gender, attention check, final 
comments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Social Preferences Task 
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Payment Overview  
 
One task has been randomly 
selected for payment 
(indicated in green). 

 
  

 
 
 
 
 
 
 

 
End of experiment 
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C Behavioral extensions

In this section we show how risk attitudes, imperfect Bayesian updating, and
social preferences influence agents’ behavior in our game. We also run simulations
to show the magnitude of the impact of these deviations from the baseline model on
group welfare.

C.1 Risk preferences

Suppose agents can be risk averse, risk neutral or risk loving, with their utility
function following the standard CRRA form given below. x denotes the monetary
value of the agents’ earnings, and γ ∈ [−1, 1] is the relative risk aversion coefficient:

u(x; γ) =

 x1−γ−1
1−γ , γ ∈ [−1, 1)

log(x), γ = 1.
(1)

It can be shown that risk attitudes – as long as they are within a reasonable
range one would expect based on past experimental research (see e.g., Holt and
Laury (2002); Anderson and Mellor (2008); Andersen et al. (2008); Bombardini and
Trebbi (2012); Charness et al. (2020))26 – do not affect predicted behavior in the
Partial and Full Info settings.

Proposition 2. Theoretical predictions in the Partial and Full Info treatments are
unaltered when the subjects’ utility function is given by (1), for all γ ∈ [−1, 1].

See Appendix E.1 for proof.

It is worth noting that in the No Info treatment, risk preferences do alter pre-
dicted reports by agents in Scenario 1: In this case, the expected earnings from
options B and A are the same. Therefore, agents prefer A (B) if and only if they are
risk averse (risk loving). But since under No Info, the predicted reports by all agents
are the same and independent of realized preferences, this makes no difference in
agents’ expected earnings, and therefore in our hypotheses.

C.2 Non-Bayesian updating: Prior bias

In this subsection we analyze how imperfect Bayesian updating can affect agents’
choices under the Partial Info treatment. We assume that imperfect belief updating

26Note that there is another popular specification of the CRRA utility function with 1−γ as the
coefficient of relative risk aversion rather than γ like in our paper (Wakker, 2008). Of course, once
the reader adjusts for the different functional specification, results regarding people’s preferences
remain similar.
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has no effect on agents’ choices under the Full Info treatment, as they directly
observe their valuations for B.27

We use a model of prior bias to capture the possibility that agents can use
updating rules that are only partially Bayesian. Prior bias, also known as conserva-
tive Bayesianism (Edwards, 1968) or inertia, captures inferences drawn in favor of
the prior belief, and it belongs under the umbrella of confirmation biases. Related
experimental evidence is well documented in the psychology literature (e.g., Pitz
et al. (1967), Geller and Pitz (1968), Pitz (1969)).28 We use the following model of
a prior-biased updating rule, following Epstein (2006), who provides an axiomatic
foundation for prior bias:

q(·|s) = (1− b)p(·|s) + bp0 (Prior Bias)

where p0 is the prior belief and p(·|s) is the Bayesian update of p0 after receiving
a signal s. In our case, since we consider only the Partial Info treatment, s can only
be a recommendation of A or B. Hence, q(·|s) captures the prior-biased updated
belief where b ∈ [0, 1] is the degree of prior bias.

We show that as long as the prior bias is not more than 60%, our baseline
predictions still hold, as long as the agents’ risk aversion is within our assumed
range of γ ∈ [−1, 1].

Proposition 3. For prior bias b < 60%, baseline predictions hold.

The intuition for this result is as follows: In Scenario 1, risk neutral and risk
loving agents weakly prefer B a priori. They naturally prefer it also when they are
recommended B. Hence, regardless of the prior bias, such agents accept B when
recommended. Risk averse agents, on the other hand, prefer A a priori, but prefer
B when B is recommended, when fully Bayes-rational (b = 0). Hence these agents
reject the recommendation of B if the prior bias is too high. The exactly opposite
case arises when the agents are recommended A.

Putting the two cases in Scenario 1 together, we obtain the threshold of prior
bias depicted in Figure C1 below. In particular, it plots the maximum prior bias
which still allows baseline predictions to hold, as a function of risk preferences.

27Technically, imperfect belief updating can affect agents’ choices under the Full Info treatment
as well if we think of an agent’s observed information as only a signal, even if an agent is told that
it is supposed to be fully revealing. We assume away this possibility.

28See de Clippel and Zhang (2022) for how prior bias affects the optimal signal in information
design settings with a single decision-maker. Our designer does not take potential prior bias into
account in her design.
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Figure C1: Bounds of prior bias for baseline predictions to hold in Scenario 1. The
same bounds apply to the probability of the social planner mistakenly observing
preferences of the agents (see below).

In Scenario 2, the prior and posterior preferred object of each agent is the same
— object A — regardless of the recommendation, even when they are fully Bayes-
rational. Prior bias brings posterior preferences closer to prior preferences, thereby
leaving Scenario 2 preferences unchanged. Hence Scenario 2 imposes no upper bound
on the tolerance of our model for prior bias. For proof, see Appendix E.2.

Having established that baseline predictions no longer hold if the prior bias is
sufficiently high, let us highlight the benchmark extreme case of b = 1. In this case
the agents do not update their estimates of A and B based on the recommendation at
all. In Scenario 1, such agents always choose A (respectively, B) under Partial Info
if they are risk averse (respectively, risk-loving), based on prior expected utilities.
For the same reason, they always choose A (i.e., behave the same way as predicted
under the baseline model) in Scenario 2. This is summarized in the proposition
below.

Proposition 4. Fully prior-biased (b = 1) agents’ predicted choices in the two
scenarios are as follows:

• Scenario 1: They always choose A (respectively, B) under Partial Info if they
are risk averse (respectively, risk-loving). Either choice is possible if they are
risk neutral.

• Scenario 2: They always choose A.
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In summary, sufficiently prior biased agents play the “Always safe” strategy of
choosing A in both scenarios, in the usual case when they are weakly risk averse.

To illustrate the impact of the Always safe strategy on group welfare, consider
Figure C2: It compares the aggregate welfare levels of Full Info and Partial Info
treatments for different shares of agents in Partial Info exhibiting the behavior of
always choosing the safe option A. Each blue data point (diamond) depicts the
average group payoff of a simulation of 2500 groups by 10 000 computerized agents
(bots in the oTree software). At the 0% mark on the left, all agents are programmed
with the optimal strategy: follow the recommendation in Scenario 1 and select
the safe option in Scenario 2. The other marks on the x-axis show the results
for increasing shares of agents who play Always safe. For example, in Scenario 1
under 20% Always safe, there are approximately 2000 agents who always choose A,
and 8000 agents who follow the recommendation. Since the agents are randomly
allocated to groups, there might be some groups in which all agents follow the
recommendation, but also some where all choose A.

We can contrast this with the average group payoff based on the same valuations
under the Full Info treatment, depicted in orange (squares). Here, each comput-
erized agent ‘selected’ the option with the highest payoff and a random choice was
implemented in case of a tie. Notice that the orange lines are horizontal by definition.

The grey (green) triangles represent the aggregate group welfare when the group
achieves the maximum (minimum) possible payoff by allocating B to the two agents
with the highest (lowest) B-valuations, and A to the remaining agents. These lines
are likewise horizontal by definition because they do not depend on the agents’
behavior (but note some variation due to the random selection of valuations by the
software).
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Figure C2: Average group welfare across scenarios and types of agents, Always safe

Finally, we note that prior bias could be interpreted as the degree of mistrust
agents have for an information source (Lee et al., 2023). In other words, the agents
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would believe that the planner does not observe the agents’ preferences precisely –
with some probability, she observes a potentially different preference profile, chosen
uniformly at random from all preference profiles. As a result, their updated beliefs
would become biased towards the prior, and thus the bound derived for prior bias
above doubles up as the bound for the maximum probability of random mistakes of
the planner for which baseline predicted behaviors remain unchanged.

C.3 Social preferences

Departing from the assumption of perfect self interest, we now assume the agents
care about a weighted average of their own payoff and their group’s payoff.29

Let ui denote the utility of agent i purely from the allocation he gets, regardless
of others’ allocation. Using vi to denote the overall utility of agent i, taking into
account his regard for others,

vi =(1− a)ui + a
∑
j

uj

=ui + a
∑
j 6=i

uj. (Social Preferences)

As given above, a is the weight an other-regarding agent puts on the group’s
payoff. In the calculations that follow, we assume other-regarding agents see others
as similar to themselves, but only take into account the direct utility obtained by
other agents, not their “social” utility. In particular, an agent with a risk aversion
parameter γ and prior bias b assumes the same values for these parameters and
a = 0 for all others (as captured by (Social Preferences)).

In general, we consider a ∈ [−1, 1]. It can be shown that spiteful agents (a ∈
(−1, 0)) behave identically as non-other-regarding agents (a = 0) in our setting. For
brevity, we omit these details. For the rest of this subsection we focus on the case
when agents are altruistic, i.e., a ≥ 0.

C.3.1 Full Info

Whenever an agent i’s report affects outcomes, using (Social Preferences) and
the fact that agents’ preferences are i.i.d., we have:

His expected payoff from picking B = uiB + a(2uA + EuiB),

From picking A = uA + a(uA + 2EuiB).

29Notice that this could be also interpreted as a preference for “efficiency” which is distinct from
social preferences. However, in what follows we do not separate these two interpretations.
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Hence:

The agent strictly prefers B (A)

⇐⇒ uiB + a(2uA + EuiB) > (<)uA + a(uA + 2EuiB)

⇐⇒ uiB > (<)(1− a)uA + aEuiB (Altruism preferences)

Clearly, without social preferences (a = 0), we have:

The agent strictly prefers B (A)⇐⇒ uiB > (<)uA (Baseline preferences)

Comparing (Baseline preferences) and (Altruism preferences), we conclude that
(i) if uA = uiB, social preferences do not affect the agent’s choices, and (ii) the
choices with and without social preferences are different if:

(1− a)uA + aEuiB < uiB < uA or (1− a)uA + aEuiB > uiB > uA (2)

The first (second) inequality can hold only if uA > uiB (uA < uiB).
It can be verified that for a ∈ [0, 1], the above can hold only in Scenario 2 for

risk averse agents with uiB = 200. The threshold of altruism (a) for which baseline
predictions hold in Scenario 2 under Full Info is depicted in Figure C3a. As we see,
for highly risk averse agents even a little bit of altruism is sufficient for them to
choose B in Scenario 2 when its value is 200, i.e., lower than A.

C.3.2 Partial Info

For simplicity, for belief updating — which is relevant only in the Partial Info
treatment — we consider only the two extreme models, fully Bayesian (prior bias
b = 0) and fully prior-biased (b = 1).

Intuitively, whenever a purely self-interested agent accepts a recommendation
in the Partial Info setting, any altruistic agent (a > 0) should also do so, because
agents know that the recommendations are given in order to maximize aggregate
welfare. Hence, in Scenario 1, and in Scenario 2 upon being recommended A -
cases where pure rational self-interest is sufficient for Bayesian agents to accept the
welfare-maximizing recommendation — the predictions for altruistic agents (a > 0)

are the same as those in the baseline model (a = 0). Fully prior-biased agents
do not update their beliefs in response to the partial information signal. So, their
assessment of their (and everyone else’s) payoffs from each object is the same as
their prior assessment. Hence, for each agent, the gain of another agent from him
trading A for B (or the reverse) is exactly equal to their own loss from such a trade.
Hence such a trade is not profitable to any non-Bayesian agent, as long as a < 1.
This is summarized in the proposition below.
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Proposition 5. Altruism makes no difference in predicted behavior in the following
cases:

• In Scenario 1 for fully Bayesian agents.

• Regardless of the Scenario for fully prior-biased agents.

In Scenario 2, where purely self-interested Bayes-rational agents reject one of
the welfare-maximizing recommendations, sufficiently high altruism may make them
accept it instead. We derive thresholds of altruism for changing the Bayesian agents’
decision from not accepting to accepting a Recommendation of B in Scenario 2.
These are plotted below in Figure C3. In particular, for the risk neutral case,
Bayesians in Scenario 2 need a in the above model of social preferences to be at
least ∼ 15%. The reason the threshold falls from that level for both risk-averse and
risk-loving agents is because of our assumption that agents see others as just as risk-
averse/risk-loving as themselves. Hence, while the loss from making a sacrifice falls
with (signed) risk aversion, so does the gain of the agent who is the beneficiary of
such a sacrifice. Given our model parameters, the personal loss falls at a rate lower
than the societal gain with increasing risk aversion, leading to agents becoming
more willing to sacrifice for others both with increasing risk aversion and increasing
risk-lovingness.

Detailed calculations are in Appendix E.3.
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Figure C3: Threshold of altruism to accept B for Bayesians in Scenario 2. For
prior-biased agents, the threshold would be higher, for each level of risk-aversion.

In summary, altruism pushes agents to follow the recommendation in both Sce-
narios. As in subsection C.2, we pair this insight with simulation results. In particu-
lar, we compare average aggregate payoffs under Full and Partial Info while varying
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the share of agents who use the decision rule of always following the recommenda-
tion. Figure C4 below depicts the results, reflecting the theoretical conclusions of
this subsection. Specifically, in Scenario 1 the decision rule of Always Follow makes
no difference (flat lines in the figure on the left), but in Scenario 2, as the share of
always following agents increases, so does the aggregate payoff (upwards-trending
blue line). This underscores that altruism-driven collective recommendation follow-
ing can increase group payoffs all the way until the maximum group payoff.
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Figure C4: Average group welfare across scenarios and types of agents, Always follow

C.3.3 Experimenter demand

If experimenter demand effects (Zizzo, 2010) are present, agents follow the recom-
mendation in an attempt to please the experimenter, regardless of their risk aversion,
belief updating rules and social preferences. Therefore, in this sense, experimenter
demand operates like social preferences, as delineated at the beginning of Section
C.3. Hence, experimenter demand makes no difference to baseline predictions in
Scenario 1, and makes agents more likely to accept the recommendation in Scenario
2. More specifically, using any appropriate model of experimenter demand, we can
find its threshold for the agent’s acceptance of B in Scenario 2, just like in Figure
C3b. Because of this analogy in the function of altruism and experimenter demand,
the behavioral rule of Always follow depicted in the simulation results of Figure
C4 can be also explained by experimenter demand. We omit the straightforward
mathematical details for the sake of brevity.

Alternatively, the subjects may display a tendency to defy the experimenter on
purpose. While we do not model this explicitly, the simulated average aggregate
payoffs for varying percentages of agents always defying the recommendation are
depicted in Figure C5 below. As expected, as the share of defying agents increases,
the average aggregate payoff drops in both Scenarios. As the recommendation is
designed to maximize the group payoff, it is not surprising that the opposite behavior
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facilitates sub-optimal object allocations and therefore minimizes group payoffs when
all agents follow that strategy.
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Figure C5: Average group welfare across scenarios and types of agents, Always
opposite

An alternative explanation that could rationalize agents pursuing the opposite
of what they were recommended would be a belief that with some probability, the
planner mistakenly swaps the agent’s recommendations – i.e., recommends him A

when his utilitarian allocation should have been B (or vice versa). Hence, unlike in
the baseline case where a recommendation of x ∈ {A,B} is always “good news” for
his utility from x, in this case it is a mix of good and bad news. This is because a
recommendation of, say, B, means that with some probability, the correct recom-
mendation should have been A, which is “bad news” for his utility from B. Hence,
if such mistakes are too likely, recommendations end up giving the exact opposite
of their intended information to recipients — and hence upend our predictions. The
maximum tolerable mistake probability for our baseline predictions to hold, as a
function of the risk aversion parameter γ — called δS(γ) — is plotted in Figure C6.

The intuition behind such a pattern is as follows. An observed recommendation
of each of A and B is a mixture of its “actual” recommendation and a recommen-
dation of the opposite object. Hence, unless correct recommendations are at least
as likely as incorrect ones, the meaning of each recommendation flips and our pre-
dictions are flipped as well. This puts an upper bound of 50 % on the maximum
tolerable mistake probability, as we want agents to accept recommendations in Sce-
nario 1. In Scenario 2, A is preferable to agents both when it is recommended
and when B is recommended. Hence any mixture of these two recommendations
makes no difference to the agent, and our predictions continue to hold, for any
mistake probability. Therefore Scenario 2 imposes no additional restriction on the
maximum tolerable mistake probabilities.

In Scenario 1, B has to be favored (respectively, disfavored) compared to A
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when it is recommended (respectively, when A is recommended). This can put
tighter bounds on the tolerable mistake probability — and does, if and only if the
agents are risk averse, as depicted in Figure C6.
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Figure C6: The maximum probability with which swap mistakes can occur for
baseline predictions to hold in Scenario 1

D Proofs of main theoretical predictions

D.1 Generalization and proof of Proposition 1

Let us call vix := uix − uiy agent i’s relative preference for object x where x, y ∈
{A,B}, x 6= y. As in the main text, we use ûi to denote i’s relative preference for
A. Hence viA = ûi and viB = −ûi for all i.

We need additional notation to define the generalized notion of no strong a priori
preferences (NSAP), introduced in the main body. For all i and x ∈ {A,B}, let:

U+x,i = {u ∈ U : #{j : vix > vjx} ≥ n}},
U0,x,i = {u ∈ U : #{j : vix > vjx} < n,#{j : vix ≥ vjx} ≥ n},
U−x,i = {u ∈ U : #{j : vix < vjx} ≥ n}}.

Note that U0,x,i = U0,y,i. Let us therefore denote U0,x,i by U0,i going forward.
Further, let F=x,i denote the CDF of vix conditional on U−x,i, i.e. F=x,i : V →

[0, 1], v 7→ µ({vix ≤ v|(ui, u−i) ∈ U0,i}).
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In an i.i.d. setting with two options, we say agents have no strong a priori
preferences if there exists q ∈ [0, 1] such that:

E(vix|U+x,i ∪ {U0,i, F=x,i(vix) = q1{x=A} + (1− q)1{x=B}}) ≥ 0, x ∈ {A,B}.
(NSAP)

Agent i is said to have no strong a priori preferences if there exists q ∈ [0, 1] such
that, when he knows his relative preference for object A (B) is “strongly above
the median” (#{j : vix > vjx} ≥ n for either x) or “weakly above the median”
(#{j : vix > vjx} < n and #{j : vix ≥ vjx} ≥ n for either x) with its value lying
in the top q (1− q) quantiles, measured according to the prior conditional on lying
weakly above the median, he prefers A (B).

Note that if the prior µ is atomless, µ(U0,i) = 0, hence in (NSAP), E(vix|U+x,i ∪
{U0,i, F=x,i(vix) = q1{x=A} + (1 − q)1{x=B}}) = E(vix|U+x,i), i.e., the definition of
NSAP boils down to the simpler, rank-based definition given in the main text.

With this generalized definition of NSAP, the statement of Proposition 1 remains
the same. We provide its proof below.

Claim 1. Under any aggregate welfare maximizing signal, i is recommended A (re-
spectively, B), if:

#{j : ûi > ûj} ≥ n (respectively, #{j : ûi < ûj} ≥ n),

and only if:

#{j : ûi ≥ ûj} ≥ n (respectively, #{j : ûi ≤ ûj} ≥ n).

Proof. “Only if” part. Suppose agent i ∈ I is recommended A under the aggregate
welfare maximizing allocation. Fix any other agent j ∈ I \ i who has been recom-
mended B. i knows that keeping the allocation of every agent in I \ {i, j} the same
as what they have been recommended, exchanging i and j’s allocation would weakly
reduce aggregate utility. That is,

uiA + ujB ≥ uiB + ujA

⇐⇒ ûi ≥ ûj

The above must hold for every i who has been recommended A and every j

who has been recommended B. Hence |{j : ûi ≥ ûj}| ≥ n for all i who have been
recommended A.

“If” part. Conversely, if i is recommended B, by the above result this implies,
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#{j : −ûi ≥ −ûj} ≥ n

⇐⇒ #{j : ûi ≤ ûj} ≥ n

=⇒ #{j : ûi > ûj} ≤ n− 1, i.e. #{j : ûi > ûj} < n.

The last line comes from the fact that #{j : ûi > ûj}+#{j : ûi ≤ ûj} = 2n− 1.
Hence the “if” part follows.

Before proceeding further we need to formalize recommendation signals, as de-
fined in the main text. A recommendation signal can be described as a vector-valued
function R : U → [0, 1]I where the i-th component of Ri(u) captures the probability
of recommending A to agent i when the realized preference profile is u ∈ U .

By Claim 1, a recommendation signal must recommend x to i if (ui, u−i) ∈ U+x,i.
Following the definition of NSAP, let us define a cutoff recommendation signal
as a recommendation signal for which there exists v and q ∈ [0, 1] such that, for
(ui, u−i) ∈ U0,i it recommends x to i with probability 1 if vix > v, with probability
q if vix = v and with probability 0 otherwise.

Claim 2. For any recommendation signal R, there exists a cutoff recommendation
signal Rc such that:

E(ûi|A,Rc
i ) ≥ E(ûi|A,Ri) and E(ûi|B,Rc

i ) ≤ E(ûi|B,Ri).

Proof. Let the total probability of recommending A and B to i, under the recommen-
dation signal R, conditional on U0,i be pA and pB respectively. Hence pA + pB = 1.
Let:

vA = inf{ṽ : µ ({ûi > ṽ|(ui, u−i) ∈ U0,i}) < pA}
vB = sup{ṽ : µ ({ûi < ṽ|(ui, u−i) ∈ U0,i}) < pB}

We first claim that vA = vB. To see why, note that ∀ ṽ <

vB, µ ({ûi < ṽ|(ui, u−i) ∈ U0,i}) < pB, i.e. µ ({ûi ≥ ṽ|(ui, u−i) ∈ U0,i}) > pA. Hence,
ṽ ≤ vA for all ṽ < vB. ∴ vB ≤ vA.

Suppose vA > vB. Hence, for all ṽ ∈ (vB, vA):

µ ({ûi > ṽ|(ui, u−i) ∈ U0,i}) ≥ pA, and

µ ({ûi < ṽ|(ui, u−i) ∈ U0,i}) ≥ pB.

Adding the above two inequalities we have:
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1 ≥ µ ({ûi > ṽ|(ui, u−i) ∈ U0,i}) + µ ({ûi < ṽ|(ui, u−i) ∈ U0,i}) ≥ pA + pA = 1.

The above is possible only if, for all ṽ ∈ (vB, vA), µ ({ûi > ṽ|(ui, u−i) ∈ U0,i}) +
µ ({ûi < ṽ|(ui, u−i) ∈ U0,i}) = 1, i.e. µ ({ûi = ṽ|(ui, u−i) ∈ U0,i}) = 0. Moreover,
µ ({ûi > ṽ|(ui, u−i) ∈ U0,i}) = pA, and µ ({ûi < ṽ|(ui, u−i) ∈ U0,i}) = pB. This im-
plies:

µ ({ûi ∈ (vB, vA)|(ui, u−i) ∈ U0,i}) = 0,

µ ({ûi ≥ vA|(ui, u−i) ∈ U0,i}) = pA,

µ ({ûi ≤ vB|(ui, u−i) ∈ U0,i}) = pB.

If vA > vB, pick any cutoff v ∈ (vB, vA) and q ∈ [0, 1]. If vA = vB, there exists
q ∈ [0, 1] such that:

µ ({ûi > vA|(ui, u−i) ∈ U0,i}) + qµ ({ûi = vA|(ui, u−i) ∈ U0,i}) =
∫

{u∈U0,i}

Rc
i (u|U0,i)dµ(u|U0,i)

The cutoff recommendation signal, as constructed above - let us call it Rc - has
the property that A and B are each recommended with the same probability on U0,i
under Rc as under R.

Clearly, by construction, E(ûi|U0,i, Rc) ≥ E(ûi|U0,i, R) and E(ûi|U0,i, Rc) ≤
E(ûi|U0,i, R).

E(ûi|A,Rc) =

E(ûi|U+A,i)µ(U+A,i) + E(ûi|U0,i, Rc)
∫

{u∈U0,i}
Rc
i (u|U0,i)dµ(u|U0,i)

µ(U+A,i) +
∫

{u∈U0,i}
Rc
i (u|U0,i)dµ(u|U0,i)

≥
E(ûi|U+A,i)µ(U+A,i) + E(ûi|U0,i, R)

∫
{u∈U0,i}

Rc
i (u|U0,i)dµ(u|U0,i)

µ(U+A,i) +
∫

{u∈U0,i}
Rc
i (u|U0,i)dµ(u|U0,i)

=

E(ûi|U+A,i)µ(U+A,i) + E(ûi|U0,i, R)
∫

{u∈U0,i}
Ri(u|U0,i)dµ(u|U0,i)

µ(U+A,i) +
∫

{u∈U0,i}
Ri(u|U0,i)dµ(u|U0,i)

.

= E(ûi|A,R).

Similarly, it follows that E(ûi|B,Rc) ≤ E(ûi|B,R).

Completing the proof. By Claim 2, the first best is implementable if and only if
it is implementable by a cutoff recommendation signal. Recalling our definition of
NSAP, the result follows.

52



D.2 Calculations underlying main hypotheses

The payoff from of B can can take three values. In order to be able to use the
same notation for both scenarios, let us call them H,M,L, going from the highest
to the lowest.30 For the reader’s convenience, the distribution of B-values for both
Scenarios is re-iterated below.

B-values (uiB) H M L

Probabilities 1
5

3
5

1
5

D.2.1 Basis for theoretical predictions (Section 2.3)

In this section, we describe the algebraic steps taken to arrive at the hypotheses
in Section 2.3.

Fix any Scenario, 1 or 2. The distribution of B pins down the distribution of the
34 = 81 possible cardinal preference profiles. Fix any of these preference profiles.
Now let us consider the information treatments one by one.

• Full Info: Given any preference profile, we can calculate the allocation for each
of the 4! = 24 priority rankings of agents and their corresponding aggregate
welfare, assuming that agents simply choose the option that gives them a
higher private payoff. Since all rankings are equally likely under random serial
dictatorship, we take their uniform average to compute the expected aggregate
payoff.

• Partial Info: In Scenario 1, the recommendation, which is aggregate payoff
maximizing, should be accepted (we show this in the next subsection, D.2.2).
Therefore, for each realized preference profile, the aggregate payoff is the max-
imum possible aggregate payoff, across all possible allocations.

In Scenario 2, each agent reports A. Hence, we can compute the aggregate
payoff for each agent ranking, and therefore the expected aggregate payoff,
exactly like in Full Info.

• No Info: In Scenario 1, under our baseline assumption of risk-neutrality,
each player is indifferent between A and B. We assume, for each ranking,
each player is equally likely to report A and B. Under this assumption, we
can calculate the expected aggregate payoff for each ranking, and then take
the uniform average across all rankings to generate the expected aggregate
payoff for the realized preference profile. We also repeat the above calculation
assuming each player reports A and each player reports B. This does not alter
our baseline hypotheses reported in Section 2.3.

30So, in Scenario 1, H,M and L denote 500, 300 and 100 respectively, and in Scenario 2, they
denote 400, 200 and 0 respectively.
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In Scenario 2, each agent strictly prefers A. Hence for this Scenario, our
calculations are identical to that under Partial Info.

The above calculations allow us to compute the distribution of aggregate payoffs
for each Scenario and information treatment. An example is given below.

Table D1: Distribution of aggregate
payoffs in Scenario 1

Probability Aggregate payoff

0.0016 800

0.0192 1000

0.3952 1200

0.4032 1400

0.1808 1600

D.2.2 Posterior distributions of B conditional on recommendations

Let Ri denote the agent’s recommendation, so Ri ∈ {A,B} for all i ∈ I. Let
u−i,B denote the set of B-values of all (three) agents other than i. Upon observing
a recommendation of B under the partial information treatment, the agent updates
his posterior distribution of B-values using Bayes rule as follows:

Pr(uiB|Ri = B) =
Pr(Ri = B|uiB)Pr(uiB)∑

uiB∈{H,M,L}
Pr(Ri = B|uiB)Pr(uiB)

, (Bayes)

where Pr(Ri = B|uiB) =
∑
u−i,B

Pr(Ri = B|uiB, u−i,B)Pr(u−i,B)

where in the last line we use the fact that Pr(u−i,B|uiB) = Pr(u−i,B), by indepen-
dence across agents.

Recall that when there are multiple allocations which all maximize aggregate
payoff, the planner chooses one uniformly at random, and jointly recommends it
(privately) to each agent. Using this information, the distribution of B-values for the
population and the corresponding probability of i being recommended B conditional
on each of his possible B-values, is given below.
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Table D2: Distribution of recommendation B

Pr(Ri = B | u−i,B, uiB) Pr(Ri = B, u−i,B | uiB)
u−i,B Pr(u−i,B) uiB = H uiB =M uiB = L uiB = H uiB =M uiB = L

HML 18/125 1 1/2 0 18/125 9/125 0
HHM 9/125 2/3 0 0 6/125 0 0
HHL 3/125 2/3 0 0 2/125 0 0
MMH 27/125 1 1/3 0 27/125 9/125 0
MML 27/125 1 2/3 0 27/125 18/125 0
LLH 3/125 1 1 1/3 3/125 3/125 1/125
LLM 9/125 1 1 1/3 9/125 9/125 3/125
HHH 1/125 1/2 0 0 1/250 0 0
MMM 27/125 1 1/2 0 27/125 27/250 0
LLL 1/125 1 1 1/2 1/125 1/125 1/250

The table entries are understood as follows. Fix an agent i. The first two columns
of Table D2 capture the joint distribution of the other three agents’ valuations of B
(The first column captures the joint valuations and the second, their probabilities).
For example, the valuation set u−i,B = {M,M,L} can arise in 3 ways - with L being
assigned to any of the three agents other than i. The probability of each of these
three possible joint assignments occurring is 3

5
· 3
5
· 1
5
. Hence the total probability of

the event u−i,B = {M,M,L} is 3× 3
5
· 3
5
· 1
5
= 27

125
, as noted in the second column of

the fifth row.
The next three columns of the table capture the probability of i being recom-

mended B, given a particular joint realization of others’ valuations, depending on
the row, and i’s own. For example, When the others’ joint assignment is {M,M,L}
and i’s own is M , note that there are three possible aggregate payoff maximizing
allocations, in two of which i is allocated B. Hence the entry of 2/3 in the fourth
column of the same row.

The last three columns of the table simply convert the above distribution of the
recommendation of B for i, conditional on the joint valuation profile of all the four
agents, to the joint distribution of a recommendation of B for i and a joint valuation
profile of the other three agents, conditional on each possible realization of i’s own
value.

We can use (Bayes) with values from Table D2 to calculate the posterior dis-
tribution of each agent upon receiving each recommendation, as given in Table D3
below. Note that the probability of the recommendation A is just the complement
of that of B, for any given realized valuation.
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Table D3: Distribution of B values conditional on the recommen-
dation

Value of B L M H

Value in Scenario 1 100 300 500

Value in Scenario 2 0 200 400

Probability (on being recommended B) 9
625

375
625

= 3
5

241
625

Probability (on being recommended A) 241
625

375
625

= 3
5

9
625

Using the above, we obtain the values given in the text for the case when the
agents are risk-neutral.

E Proofs for behavioral extensions

Note that by strategyproofness of random serial dictatorship, as long as subjects
understand the game, under any information treatment, they report an object — A

or B — if and only if its posterior expected utility is higher than that of the other
one. The bounds derived in this section draw on this observation.

E.1 Risk attitudes

To summarize our arguments for Proposition 2, we show that in Scenario 1 an
gent with risk aversion parameter γ accepts a recommendation of B for all γ ∈
[−1, 1). Similar calculations show that he also accepts a recommendation of A
in both Scenarios and rejects a recommendation of B in Scenario 2, also for all
γ ∈ [−1, 1). The case of the Full Info treatment is obvious. For this subsection we
assume agents are perfectly Bayesian.

Proof of Proposition 2. For acceptance of a recommendation of B in Scenario 1
we need,

E(ûi,(b,a)|rank(ûi,(b,a)) ≤ 2) > 0, for any γ ∈ (0, 1].

For any γ ∈ [−1, 1], utility from B takes values {u(vi)}3i=1, where {vi}3i=1 are
as given in Table D3 and the utility function u(·) is as defined in (1). Letting
fL := 9

625
, fM := 3

5
, fH := 241

625
and vA := 300, upon being recommended B, the agent

accepts the recommendation if and only if:

u(L)fL + u(M)(1− fL − fH) + u(H)fH︸ ︷︷ ︸
Expected utility from B when recommended B

≥ u(vA)︸ ︷︷ ︸
Utility from A, =u(M) in Scenario 1

(3)
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In Scenario 1, (3) is equivalent to (using Table D3):

fL
fH
≤ u(H)− u(M)

u(M)− u(L)
=

5001−γ − 3001−γ

3001−γ − 1001−γ
(4)

The right hand side of (4) is a decreasing function of γ for γ ∈ [−1, 1]. Therefore
suffices to show that lim

γ↑1
5001−γ−3001−γ
3001−γ−1001−γ exists and fL

fH
≤ lim

γ↑1
5001−γ−3001−γ
3001−γ−1001−γ .

Using L’Hospital’s rule, lim
γ↑1

5001−γ−3001−γ
3001−γ−1001−γ = lim

γ↑1
5001−γ ln 500−3001−γ ln 300
3001−γ ln 300−1001−γ ln 100

= ln3 5 −

1 ≈ 0.4605. fL
fH

= 9
241

< ln3 5− 1.
Therefore in Scenario 1, agents choose B when recommended regardless of risk

parameter γ, as long as γ ∈ (−1, 1].
Similarly, in Scenario 2, (3) is equivalent to:

fH(u(H)− u(M))− fL(u(M)− u(L)) ≥ u(vA)− u(M)

Similarly, using values from Table D3 for Scenario 2, it is easy to verify that this
is never satisfied for γ ∈ [−1, 1). Hence the (Bayesian) agent in Scenario 2 never
accepts a recommendation of B - similarly as in the baseline risk-neutral case - for
γ ∈ [−1, 1).

Similar calculations show that a recommendation of A is accepted if and only if:

u(L)fH + u(M)(1− fL − fH) + u(H)fL ≤ u(vA)

Using values from Table D3, it can be verified that this is satisfied in both
scenarios, for all γ ∈ [−1, 1].

Hence the agents accept a recommendation of A in both scenarios, for any level
of risk preferences within the range γ ∈ [−1, 1].

E.2 Non-Bayesian updating: Prior bias

In the model of prior bias, (Prior Bias), the posterior expected utility of an agent
from object B upon receiving any signal s ∈ {A,B} is a convex combination of the
Bayesian posterior expected utility and the prior expected utility.

Let us denote the posterior expected utility from object B of an agent i with
prior bias b, upon receiving recommendation s ∈ {A,B} as E(uiB|s, b). Then, by
our model (Prior Bias) we have:

E(uiB|s, b) = E(uiB|s, 0)(1− b) + bE(uiB)

Clearly, E(uiB|s, 0) is the Bayesian posterior expected utility.
Hence,
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B is chosen after recommendation s⇐⇒ E(uiB|s, b) ≥ uiA

⇐⇒ E(uiB|s, 0)(1− b) + bE(uiB) ≥ uiA (5)

Note that in Scenario 1, for risk neutral or risk loving agents, each term in the
average on the left hand side above is weakly greater than u(vA). Hence, this holds
for any b ∈ [0, 1] for risk neutral or risk loving agents.

For risk averse agents, calculating E(uiB|A, 0) and E(uiB|B, 0) as we did in the
previous section, and using the same notation, we have, the recommendation s = B

is accepted in Scenario 1 if and only if:

(
u(L)fL+u(M)(1−fL−fH)+u(H)fH

)
(1−b)+b

(
u(L)

1

5
+ u(M)

3

5
+ u(H)

1

5

)
≥ u(vA)

Simplifying, we have, this holds if and only if:

b ≤ 1

1−
1
5
((u(H)−u(M))−(u(M)−u(L)))

fH(u(H)−u(M))−fL(u(M)−u(L))

(6)

Let bis(γ) denote the maximum b as a function of risk aversion for which agents
behave as predicted in the baseline case in Scenario i ∈ {1, 2} when recommended
s ∈ {A,B}.

Then, summarizing the above reasoning, we have:

b
1

B(γ) =


1, γ ≤ 0

1

1−
1
5 ((u(H)−u(M))−(u(M)−u(L)))

fH (u(H)−u(M))−fL(u(M)−u(L))

, γ ∈ (0, 1].

Similar calculations for recommendation A in Scenario 1 lead to the following
thresholds:

b
1

A(γ) =


1

1+
1
5 ((u(H)−u(M))−(u(M)−u(L)))

fH (u(M)−u(L)−fL(u(H)−u(M)))

, γ ∈ [−1, 0].

1, γ ≥ 0

In Scenario 2, when B is recommended, note that in (5), both expressions on
the left hand side - the expected utility from B with and without a recommendation
of B — are lower than the left hand side — the expected utility from A, for all
γ ∈ [−1, 1], as shown in the previous subsection. Hence (5) never holds in Scenario
2 for s = B. Hence b2B(γ) = 1 for all γ ∈ [−1, 1]. If B is not accepted when B
is recommended, it is not accepted when A is recommended, so b2A(γ) = 1 for all
γ ∈ [−1, 1] too.

The common threshold for this type of mistake probabilities, for any risk aversion
γ ∈ [−1, 1], is then b(γ) := min{b1A(γ), b

1

B(γ)}, which is plotted in Figure C1 in the
main text. As we see, b < 0.6 is sufficient to uphold our baseline predictions.
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E.3 Social preferences

Proof of Proposition 5. Each agent’s reasoning of whether to change his report
due to altruistic considerations, is as follows: Depending on agent i’s position in
the ranking of serial dictatorship and other agents’ reports, agent i’s report may or
may not affect his allocation. In particular, agents ranked 1 and 2 always get the
object they ask for, the report of the agent ranked 3 affects his allocation (which
is equivalent to him getting what he asked for) if and only if those ranked 1 and
2 made different choices, and the report of the agent ranked 4 never affects his
allocation. Based on the logic of serial dictatorship, an agent knows that when his
report affects his allocation, changing it from x ∈ {A,B} to y 6= h is equivalent
to trading h for y with some other agent, leaving the other two agents’ allocations
unchanged. His individual loss from changing his report from h to y due to altruistic
motivations is the absolute difference in his a posteriori expected utilities from A

and B, calculated per his posterior. This, as well as his assessment of the gain to
others varies depending on the Scenario and how he updates his beliefs, as detailed
below. As mentioned in the main text, we only consider the two extreme types of
updating of beliefs — fully Bayesian and fully prior-biased.

• Bayesian, Scenario 1: Each agent knows that the recommendation is intended
to maximize aggregate social welfare. As we have shown, even a purely self-
interested Bayes rational agent (a = 0) finds it optimal to accept each recom-
mendation -A or B - in Scenario 1. A positive a pushes any agent to make
choices more aligned to the social good. Therefore in Scenario 1, the Bayesian
agent’s choices for a = 0 and a > 0 are the same.

• Fully prior-biased, Scenario 1 and 2: Such agents ignore the recommendation.
Therefore, their own expected utilities from choosing A and B are their prior
expected utilities. By ignoring the recommendation, these are also the ex-
pected utilities of any potential beneficiary of the fully prior-biased agent’s
sacrifice if he chooses to change his report. Therefore, from the fully prior-
biased agent’s point of view, the expected gain of another agent from his
sacrifice is equal to his loss from the same sacrifice. Therefore, such a trade-off
makes sense to him only if a ≥ 1, which we rule out as unrealistic.

Calculations for Figure C3 (Bayesians in Scenario 2). As we have shown, in
Scenario 2 it is optimal for a self-interested Bayes rational agent to ignore the rec-
ommendation and always choose A. An altruistically motivated Bayes rational agent
may, therefore, find it optimal to change his report to B when recommended B for
a suitably high value of a > 0. When an agent is recommended A, he knows this is
the best choice both for him individually, and collectively, therefore his decision to
report A when recommended A remains unchanged.
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We claim that when he is recommended B, he knows if he picks B and his report
is relevant, someone who has been recommended A will get A.

The reasoning is as follows. The agent’s report can be relevant if and only if
either (i) he is ranked in the top two or (ii) he is ranked third and one of the agents
ranked ahead of him has reported B and the other has reported A. In the first case
(i), the agent knows that if he has been recommended B, at least one of the agents
ranked in the last two has been recommended A. When he chooses to report B,
he trades A with one of these last two ranked agents for B, i.e., someone who is
recommended A gets it.

Relevant for case (ii), recall that per our assumption, a Bayes rational and al-
truistic agent assumes others are Bayes rational but not altruistic. Therefore, each
agent knows that if he is ranked third, his report is not relevant because those ranked
ahead of him have both picked A. This is because, recall, in Scenario 2, no purely
self-interested agent will report B, regardless of the recommendation.31

Of course, the agent does not know his rank. But since he trades A for B with
someone who is recommended A in each of the possible cases, he knows this to be
the only possibility even without knowing his rank.

The change in the expected utility of an agent who has been recommended B from
swapping out B for A can be calculated using values from Table D3. Therefore, a for
the altruistic agent must be high enough so that his individual loss is compensated
by the gain of the beneficiary of his sacrifice. Therefore, in Scenario 2 for an agent
to accept a Recommendation of B we must have,

(E(uiB|recommendation B)− uiA) + a(uiA − E(uiB|recommendation A)) ≥ 0

⇐⇒ a ≥
3001−γ −

((
3
5

)
2001−γ +

(
241
625

)
4001−γ

)
3001−γ −

((
3
5

)
2001−γ +

(
9

625

)
4001−γ

) =: a(γ)

The last line comes from using values from Table D3.

F Simulations for policy analysis

A careful reader might point out that our recommendations rely on the unrealistic
assumption of risk neutral, self-interested, and perfectly Bayesian agents, and are
thus severely misaligned with the agents’ actual preferences. Let us address this
concern by now supposing that the social planner could obtain additional (truthful)

31It is worth noting that the prediction of reporting B when recommended B for altruistic
agents in Scenario 2 holds even if we assume that the agent assumes others to be Bayes rational
and altruistic. In this case, if he is ranked third, he knows his report can be relevant only if at least
one of the top two ranked agents reported B, which – per his assumption of altruism – means that
agent was recommended B. Therefore, he knows that the last ranked agent has been recommended
A. Therefore, in this case also he trades A for B with someone who is recommended A.
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information about the subjects’ preferences prior to generating her recommendation,
and could thus incorporate it in her calculations.32 If this were the case, by how
much would the recommendations change, and what would be the resulting effect
on social welfare?

Due to the complexity of the problem, we focus entirely on social preferences.
We consider this a realistic assumption, since administrative data can provide a lot
of information on this matter, be it in the form of charitable giving, volunteering
work, care for elderly or disabled relatives, etc. In our setting, we assume that the
social planner would use social preferences of agents to break ties, i.e., choose be-
tween otherwise interchangeable allocations. Specifically, all else equal, in situations
where multiple agents have the same valuations and some of them have to accept
a lower-valued object, the planner assigns this lower-valued object to the altruist,
reasoning that of all the agents, he is made the least unhappy with this allocation.
Given that we do not have robust evidence that altruists behave differently in our
experiment, we do not adjust the subjects’ behavior in response to this change in
the recommendation generation rule.

Under these assumptions, using our experimental data on the subjects’ social
preferences, we find that 6 recommendations across 3 groups (1.15%) would change
in Scenario 1 and 160 recommendations across 80 groups (30.5%) would change
in Scenario 2. Since we do not know whether a given subject would follow their
new recommendation, we compare group outcomes for two benchmarks: First, we
assume that all subjects who previously followed the recommendation continue doing
so, while those who did not follow it stick with their original choice. And second,
we calculate the hypothetical scenario if all subjects followed the original versus the
new recommendation.

32We thank John A. List for this suggestion.
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Table F1: Welfare changes under alternative recommendations

Original decisions Always follow

Scenario 1
groups with different welfare 0 (0%) 0 (0%)
individuals with different welfare 4 (0.38%) 6 (0.57%)
increased welfare non-altruists 2 (0.19%) 3 (0.29%)
increased welfare altruists 0 (0%) 0 (0%)
decreased welfare non-altruists 0 (0%) 0 (0%)
decreased welfare altruists 2 (0.19%) 3 (0.29%)

Scenario 2
groups with different welfare 16 (1.53%) 0 (0%)
individuals with different welfare 90 (8.59%) 160 (15.27%)
increased welfare non-altruists 39 (3.72%) 76 (7.25%)
increased welfare altruists 6 (0.57%) 4 (0.38%)
decreased welfare non-altruists 5 (0.48%) 11 (1.05%)
decreased welfare altruists 40 (3.72%) 69 (7.25%)

Note: Table reports the number (%) of groups and individuals for which welfare changes
under new recommendations. First column reports changes under original decisions
(follow if originally followed, else original decision); second column compares welfare
under the new vs original recommendations if these were always followed.

As shown in Table F1, it is rare for the aggregate welfare to increase (as this
only happens by chance, and only in a small set of cases). Of course, here we do
not quantify the potential welfare gains for pro-social agents who might appreciate
the new design feature of recommendations: such gains would be proportional to
the share of altruists, and could thus be estimated depending on the context one is
interested in.

However, the augmented recommendations clearly change the welfare within
groups, as the welfare of the pro-social agents is in most cases sacrificed for the
non-pro-social agents in the group. This main result is robust regardless what we
assume regarding the new recommendation following, albeit in general the share
of affected agents is small even in the (hypothetical) case where everybody follows
their recommendation.

This result also reveals a practical obstacle to using the additional information on
social preferences. Unless subjects exhibit an (unrealistically) high level of altruism
such that their loss could be compensated by an anonymous other’s gain, the agents
are incentivized to hide their pro-sociality, which may have undesirable spillovers in
other decision situations.

As a whole, we thus caution against the use of additional data on subjects’
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preferences to generate these recommendations, at least in situations with possible
behavioral spillovers in other domains, or in repeated interactions.
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G Supplementary tables

G.1 Tables complementing main analysis

Here we show that our treatments are balanced on observables. The only control
variable that is significantly different across treatments on a 5% level is comple-
tion time, which is not particularly concerning given that the longer treatments do
not result in greater problems with attention (which is a common concern in long
experiments).

Table G1: Balance table

Full Info Partial Info No Info p-value

Completion time (min) 13.26 14.20 14.14 0.023
Risk aversion 58.14 59.22 60.70 0.141
Experimenter demand 11.73 11.65 13.52 0.224
Bayesian deviation 13.00 13.50 14.82 0.165
% female 42.28 43.12 39.61 0.603
% student status 6.13 9.10 7.06 0.053
% instructions check 10.41 8.13 10.20 0.219
% instructions failure 60.57 65.76 63.92 0.068
% attention failure 47.75 49.73 50.59 0.601
% altruist 28.06 29.90 28.78 0.679

Note: Variables follow the same definitions as in Table 1.

In the main text, we report a simple logit to explore mechanisms driving subjects’
choices in te Partial Info treatment. Here, we show the results are similar in a
sequental logit model: The key advantage of modelling these choices as sequential
is that we take into account that while the parameters of the second choice are
unknown to the subjects at the moment of making the first choice, the subjects’
second choice may depend on what they chose in the first Scenario (e.g., because
they concluded that it was initially in their interest to follow the recommendation,
and are now relying on it again as a heuristic instead of checking whether it is still
in their interest (de Haan and Linde, 2018)).
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Table G2: Optimal Choices across Scenarios: Partial Info

Scenario 1 Scenario 2

(following optimal choice) (otherwise)

Recommended A 1.795*** 1.697*** 31.075*** 33.454*** 3.131* 2.909*
(0.151) (0.159) (0.347) (0.362) (0.460) (0.465)

Risk averse 1.005 1.021* 1.020 1.007 1.005
(0.006) (0.010) (0.010) (0.014) (0.014)

Non Bayesian 1.025 1.067* 1.067 0.975 0.969
(0.016) (0.033) (0.034) (0.058) (0.058)

Risk averse × non-Bayesian 1.000 0.999 0.999 1.000 1.000
(0.0003) (0.001) (0.001) (0.001) (0.001)

Inattention 0.949 0.941 0.987 0.680 0.692

(0.159) (0.228) (0.233) (0.422) (0.405)
# attempts comprehension Qs 1.328 0.542* 0.632

(0.163) (0.256) (0.466)
Altruist 1.013 0.729 0.718 0.406* 0.423

(0.173) (0.243) (0.245) (0.440) (0.481)

Experimenter demand 1.006 1.007 1.006 0.978 0.979
(0.005) (0.007) (0.005) (0.017) (0.005)

Failed comprehension Q1 1.129 0.840
(0.190) (0.258)

Failed comprehension Q2 0.846 1.355

(0.222) (0.525)
Failed comprehension Q3 0.650** 0.701

(0.162) (0.342)
Failed comprehension Q4 0.642* 0.698

(0.226) (0.513)

N (chose A) 482 501 195
N (chose B) 387 144 29
N (chose optimally) 645 501 195

N (total) 869 869 869

Note: The table shows the odds ratios from a sequential logit for making the theoretically optimal choices in
the Partial Info treatment. Optimal strategies follow the recommendation in the first Scenario, and select A in
the second Scenario. Only subjects who completed all ancillary tasks are included.
Q1 = suppose you would have chosen the other task, how much would you have earned?, Q2 = suppose two
players ahead of you would have chosen task A too, would you have been allocated A?, Q3 = could player 4
improve their payoff?, Q4 = I will know the exact payoff of B (correct answer is treatment-dependent)
Robust standard errors are in parentheses. Clustering on individual level.
* p-val< 0.05, ** p-val < 0.01, *** p-val < 0.001
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G.2 Robustness: Group outcomes excluding groups with
bots

In this section we re-estimate our main treatment effects for group-level out-
comes for only those groups where all participants completed both Scenarios of the
main game and thus were not replaced by computerized bots. Notice we are not
providing this robustness check for Table 4 because it already excludes bots in the
main analysis.

Table G3: Treatment Effects on Social Welfare (Robustness)

All comparisons Full vs. Partial Partial vs. No Full vs. No

(Jonckheere-Terpstra) (Mann-Whitney-U)

H1: Partial > Full > No
0.040* 0.499 0.001*** 0.000***

[0.091] [0.002] [0.002]
H2: Full > Partial = No

0.000*** 0.029* 0.059 0.002**
[0.023] [0.037] [0.003]

N (groups) 395 348 229 213

Note: The first column lists p-values from the Jonckheere-Terpstra trend test for the ordered aggre-
gate social welfare levels, and columns 2-4 list p-values for two-sided pairwise comparisons using the
Mann-Whitney-U test.
* p-val< 0.05, ** p-val < 0.01, *** p-val < 0.001

Sharpened false discovery rate q-values for the six pairwise tests (Anderson, 2008) are in brackets.

Table G4: Reaching First Best (Robustness)

Scenario 1 Scenario 2

H1: W∗ = Partial H2: W∗ > Full
0.000∗∗∗ 0.000∗∗∗

[0.001] [0.001]

N (groups) 182 166

Note: The table lists the p-values for the one-sample two-
sided Wilcoxon sign rank test, comparing the treatment that
was hypothesized to equal (Scenario 1) or fail to reach (Sce-
nario 2) the aggregate social welfare optimum to the theo-
retical first best.
* p-val< 0.05, ** p-val < 0.01, *** p-val < 0.001

Sharpened false discovery rate q-values for the two tests
(Anderson, 2008) are in brackets.
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H Data note

Some participants used several attempts to complete the experiment, for example
due to technical errors. Since we stored Prolific IDs, we were able to flag these as
duplicates. We decided to keep the first attempt if both Scenario decisions were
made. If a person participated multiple times but always faced the same treatment,
we keep the first completed attempt (e.g., second or third attempt). In case a
person got past the first scenario decision but has several incomplete attempts, all
attempts were deleted. The full preparation file dealing with duplicates can be found
https://www.jantsje.nl/files/preparation_matching.R
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