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Abstract 

 
This paper studies the relationship between population size and the rate of time preference 

(RTP) in pre-capitalist subsistence agricultural communities. The RTP is reflected in the 

community´s propensity to invest in and maintain new arable land that may be considered as 

an inherent characteristic of the considered community. Using a Malthusian framework, we 

show how communities with a low RTP end up with a high steady-state subsistence population 

compared to communities with a high RTP. Furthermore, unsustainable “optimum population” 

sizes are identified where consumption per capita has a maximal value. Finally, the paper shows 

that the population growth rate may have no bearing on the resulting subsistence steady-state 

population size. A population with a higher growth rate only reaches the subsistence steady-

state population size faster and have a lower maximal consumption per capita along the path to 

the subsistence level. 
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1.Introduction 

In this paper we consider population growth in a simple agrarian economy (i.e., a pre-capitalist 

subsistence agricultural community), where the main focus is on the relationship between 

impatience to consume (rate of time preference, RTP) and population size. The economy 

considered is of the very simple type; there is no accumulation of human and man-made 

physical capital, and there is no technical progress induced by population growth (Boserup, 

1965; Pryor and Maurer, 1982), or otherwise. Nor is there any exchange with the world around; 

what is consumed is therefore exactly what is produced, and the production includes only 

agricultural products. Labour is the only factor of production together with land. There is a 

constraint on the amount of land available for agricultural production, but labour can be used 

in converting undeveloped land (e.g., forest and wilderness land) into agricultural land so that 

more land, at a later stage, can be used in food production. The labour force and population are 

generally growing contingent upon food production. Therefore, population growth is 

considered both as a cause and a consequence of changes in the economy.  

 

The model to be formulated, thus, falls within the Malthusian framework where the population 

growth is determined by available resources. However, contrary to the standard Malthusian 

framework, arable land is not a fixed factor of production. The main contribution of this paper 

is the analysis on how impatience to consume and propensity to invest in productive land 

resources can play a significant part in affecting population growth as well as the size of the 

population. 

 

Factors affecting population growth in simple agrarian economies are many and varied. They 

include natural productive conditions (e.g., soil fertility, precipitation, topography, degree of 

wilderness formation), availability of other natural resources (e.g., firewood, hunting game, and 

water), variations in natural conditions (e.g., El Niño phenomena), technological level and 

mode of production, existence and proneness of diseases. Additionally, cultural and 

institutional factors play important roles. While cultural aspects related to population growth 

are clear and direct in modern societies (e.g., preferences with respect to family size and birth 

control) such factors are also present in pre-capitalist subsistence agricultural economies. 

Indeed, Malthus himself, discussing historical population growth, included «moral restraint» as 

a check on population size in addition to “vice and misery” (e.g., disease, war, poverty), 

defining “moral restraint” as “the restraint from marriage which is not followed by irregular 

gratifications” (Malthus, Second Essay, 1830). Furthermore, an earlier study of the human 
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evolution by Carr-Saunders (1922) points to a whole range of factors that may vary among 

indigenous people in influencing population growth (e.g., premature sex relations, infanticide, 

abortion, and prolonged abstention from intercourse on the part of the married, in accordance 

with prescriptive tribal usage or taboo). See also Field (1923). Additionally, it is important to 

observe that while such factors may determine the pace at which a population evolves towards 

the subsistence level population, they may not necessarily determine the size of a subsistence 

level population. Contrary to this, there are two additional cultural features that will influence 

the size of subsistence level population; the impatience to consume and the propensity to invest 

in new arable land.  

 

Evidence about inter-temporal consumption preferences of pre-capitalist subsistence 

communities is, however, somewhat meagre and scattered.  An example of extreme impatience 

to consume may be taken from the Sirino population mostly living as hunters and gatherers. 

Holmberg (1950) reports that food consumption for this population group is enormous when 

there is food available (e.g., it is not uncommon for four people to eat a peccary weighting 27 

kg. at a sitting). Normally they would not conserve food for future use and would typically go 

hungry for days when there is no food around. A similar example is reported for the so-called 

“Bushmen” of South West Africa (Haswell, 1960; Clark and Haswell, 1964). Otherwise, 

productive effort in more mature subsistence agricultural communities seem to vary a lot. 

Burgess and Musa (1950) report an effort of around 3 hours/day in agricultural activities for 

remote Malay communities, Martin (1956) reports 4 hours/day in Calabar in Southern Nigeria, 

Refisch (1960) reports 5 hours/day in the village of Warwar in Cameroun and Gourou (1968-

69) reports 6 hours/day for married men and 8.5 for married women for the city of Zandé in the 

North East of Congo. More recent studies show that the RTP in rural communities varies even 

though it is generally high. For example, Pearce and Markandya (1988) argue that this is the 

case for people living in semi-arid regions in Africa. Likewise, Pender (1996) find high discount 

rates for rural India, while Holden, Shiferaw and Wik (1998) find very high but varying RTPs 

for rural households in Indonesia, Zambia and Ethiopia.  

 

While the relationship between impatience to consume as represented by the RTP and 

population size has been acknowledged in the literature (Zimmermann, 1989; and Boucekkine, 

et al. 2017), it is often dealt with in a more indirect way in models including endogenous growth 

with technological progress. Otherwise, we are not aware of any publications studying how 

impatience to consume and propensity to invest in productive land resources may explain 
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population growth in simple agrarian communities. Hence, in what follows we aim to highlight 

this relationship by formulating an analytic model studying the relationship between impatience 

to consume and the propensity to invest in new arable land. The size of arable land and available 

labour determine food production and the size of the population that can be sustained in the 

long run.   

 

Technically, a hypothetical well-informed social planner is introduced to determine the optimal 

allocation of labour in food production and labour used for converting undeveloped land into 

agricultural land. Referring to Nerlove and Raut (1997), the present analysis falls within the 

reduced-form endogenous population models as the population growth is contingent upon 

consumption, or food per capita, and hence, the fertility behaviour is not modelled explicitly. 

However, in contrast to the reduced-form models presented in Nerlove and Raut, the following 

analysis is formulated in an optimising framework over time where the size of the population 

is determined dependent upon the RTP. We start in section 2 by presenting the model and the 

basic assumptions. Section 3 derives and characterises the optimality conditions. Section 4 

introduces simplifying assumptions with respect to production functions and investment 

behaviour while section 5 illustrates some important aspects of the population growth 

numerically. Section 6 concludes the paper.   

 

2. The model 

As stated, we consider an economy where the human population growth depends on the living 

conditions in a Malthusian manner, and where the population and land-use are interrelated 

through two production activities. Firstly, land and labour are used in production of agricultural 

goods determining the current flow of consumption. Secondly, labour is used in converting 

uncultivated land into arable land, i.e., investment in new land. Therefore, at every point of time 

the total population, , is partly allocated as labour in food production, , and partly as labour 

in land clearing and land maintenance, . Omitting time subscript, we thus have the population 

constraint:  

 

 (1) 𝑃 = 𝑁 + 𝐿. 

 

Food production, , depends on the amount of agricultural land, , together with labour use. 

In absence of any technological progress, the time-invariant production function is given as:  

P N

L

C A
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(2) 𝐶 = 𝐶(𝐴,𝑁), 

 

with +,
+-
= 𝐶- > 0,  𝐶0 > 0, 𝐶-- ≤ 0, 𝐶00 ≤ 0, 𝐶(0, 𝑁) = 𝐶(𝐴, 0) = 0 and (𝐶--𝐶00 −

(𝐶-0)3) > 0. The labour force allocated to land clearing3 and maintenance yields a gross 

addition to agricultural land, 𝐺(𝐿), while land depreciation (wilderness land formation), 

assumed to be a function of the size of agricultural land, 𝐹(𝐴), works in the opposite direction. 

Hence, the change of agricultural land is given as:  

 

 (3) 𝑑𝐴/𝑑𝑡 = 𝐺(𝐿) − 𝐹(𝐴),  

 

with 𝐺′ > 0,  𝐺′′ ≤ 0, , and 𝐹′′ ≥ 0. Additionally, we have 𝐺(0) = 𝐹(0) = 0.  

 

Population growth is assumed to be a function of consumption per capita, and is positive above 

a certain subsistence level, given by the constant .  Hence, the population growth rate is 

expressed as:  

 

 (4) :;/:<
;

= 𝑍 >,(-,0)
;

?, 

 

with 𝑍

⎩
⎪
⎨

⎪
⎧> 0 𝑎𝑠 ,

;
> 𝑘

= 0 𝑎𝑠 ,
;
= 𝑘

< 0 𝑎𝑠 ,
;
< 𝑘

.  

 

This formulation, therefore, comprises the ‘unchecked’ Malthusian case with  𝑍´ > 0 for all 

values of per capita consumption (see, e.g., Brander and Taylor, 1998). However, this general 

formulation may also comprise humped population growth with 𝑍´ > 0  for ‘low’ consumption 

per capita levels and   for ‘high’ values (see, e.g., Kremer 1993). 

 

 

 
3 Since we are interested in questions relating to population size and the extensive margin of agricultural land, we 
do not explicitly consider any maximum on the total available land that potentially may be transformed to arable 
land.  Hence, the size of agricultural land is determined endogenously and unconstrained in the model.  

' 0F >

k

' 0Z <
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3. Optimal investment policy and the steady-state 

It is assumed that the agricultural community acts as if a social planner seeks to maximise the 

net present value utility of food consumption per capita by allocating labour to agricultural 

production and to land clearing, i.e.  

 

(5) Max ∫ 𝑈 >,(-,0)
;

? 𝑒LM<𝑑𝑡∞
N , 

 

subject to equations (2), (3) and (4), and given initial values of the population size and the 

amount of arable land. The utility function is assumed to be increasing, 𝑈´ > 0, and strictly 

concave, 𝑈`` < 0. The time preference rate, RTP, is denoted 𝛿 and is assumed to be constant 

through time. As discussed above, the size of the time preference is considered to be an inherent 

characteristic of the community considered (e.g., a part of the cultural heritage).  

 

The current-value Hamiltonian of this problem is: 

  

 𝐽 = 𝑈 >,(-,;LS)
;

? + 𝜆(𝐺(𝐿) − 𝐹(𝐴)) + 𝜇𝑃𝑍 >,(-,;LS)
;

?, 

 

with l and  µ as the shadow prices of agricultural land and population, respectively. The 

necessary conditions for maximum are: 

 

 (6)  +V
+S
= −>W

X

;
+ 𝜇𝑍Y? 𝐶0 + 𝜆𝐺´ = 0 ;  , 

 (7) :V
:-
− 𝛿𝜆 = (W

X

;
+ 𝜇𝑍′)𝐶- − 𝜆(𝐹′ + 𝛿) = −:[

:<
 

and 

 (8) :V
:;
− 𝛿𝜇 = (W

X

;
+ 𝜇𝑍′)(𝐶0 −

,
;
) − 𝜇(𝛿 − 𝑍) = −:\

:<
. 

 

Control condition (6) states that the marginal gain from allocating an additional unit of labour 

to food production should be equal to the marginal opportunity cost of doing so. An additional 

unit of labour applied directly in food production increases consumption by an amount equal to 

the marginal product, 𝐶0. This amount is multiplied by the utility value per capita of an extra 

consumption unit. This value reflects both the direct utility effect of the existing population, 

0L >
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𝑈′/𝑃, and the indirect utility effect, 𝜇𝑍′, that an additional consumption unit yields in terms of 

the utility value of a change in the population size that may follow from increased consumption. 

The last term may be interpreted as the indirect utility of allocating an additional unit of labour 

to land acquisition/recovery.  

 

Portfolio condition (7) steers the optimal expansion of agricultural land. The first term on the 

right-hand side expresses the marginal per capita consumption utility following from more 

agricultural land. The second term comprises the cost of expanding agricultural land. First, there 

is an element expressing the cost in terms of the increased physical depreciation given by, 𝐹′. 

Second, there is the RTP ( )  expressing the opportunity cost of abstaining from the current 

consumption that one otherwise might have without the investment. Both these marginal costs 

are evaluated by the shadow price of agricultural land. Hence, condition (7) states that 

agricultural land at every point of time should change such that the difference between the 

marginal utility per capita gain and the cost should be equal to the negative of the change of the 

corresponding shadow price. Following Dorfman (1969) the negative of the change of the 

shadow price, or co-state variable, expresses the rate of economic depreciation of the actual 

physical capital (i.e., agricultural land) and corresponds to the negative of the change in the 

marginal stock value.  

 

Portfolio condition (8) yields the optimal expansion of the population. An additional individual 

will increase agricultural production by 𝐶0, but will on the other hand consume an amount 

given by 𝐶/𝑃 . The net effect, evaluated at its average utility value, is thus	(𝐶𝑁 − 𝐶 𝑃⁄ ), which 

may be either positive or negative4.  The second term, −𝜇(𝛿 − 𝑍), is the opportunity cost of an 

additional individual that expresses the value of consumption foregone. Condition (8) thus 

states that the optimal net gain (loss) of an additional individual should be equal to the reduction 

(increase) in the shadow value of the population, 𝜇.  

 

The second order conditions demand that the Hamiltonian should be jointly concave in the 

control and state variables (Mangasarian´s theorem). Furthermore, the solution will be unique 

 
4 Hence, if the whole population is applied in food production, the marginal product would be less than the average 
product (corresponding to consumption per capita) and this expression would be negative. This follows from the 
assumption that the production function is homogenous of a degree less than 1. However, only a part of the 
population is applied directly in food production so the marginal product may very well be larger than average 
consumption and will accordingly give a positive expression.    
 

d
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when the Hamiltonian is strictly concave in the control and state variables which is secured 

through the concave utility function, the concave food production function, the concave land 

clearing function and the convex land depreciation function.  

 

Eqs. (6) – (8) together with Eqs. (3) and (4) represent a system of five equations with one control 

variable, two state variables and two shadow prices. It is well-known that the dynamics of a 

system with two state variables and one control variable may be complicated both when the 

system is unilinear in the control, as here, and also when it is linear (see., e.g., Clark, 1990, 

Ch.10 and Mesterton-Gibbons, 1996). In section 5 we study a simplified version of the 

dynamics where the investment fraction is kept fixed. However, to find the steady-state, or 

golden rule, condition of the above model is straightforward. It is given by Eq.  (6) together 

with:   

(7’)  (W
X

;
+ 𝜇𝑍′)𝐶- = 𝜆(𝐹′ + 𝛿), 

(8’) (W
X

;
+ 𝜇𝑍′)(𝐶0 −

,
;
) = 𝜇𝛿,  

(3’)  𝐺(𝐿) − 𝐹(𝐴) = 0 

and 

 (4’) 𝑍(,
;
= 𝑘) = 0. 

 

Thus, these equations determine	𝑃∗, 𝑁∗, 𝐿∗and 𝐴∗together with the shadow prices 𝜆∗and 𝜇∗ 

(where superscript ‘*’ indicates the optimized steady-state values). Condition (4’) states that 

the equilibrium food consumption per capita will be fixed at 𝐶∗/𝑃∗ = 𝑘 while condition (8’) 

indicates that the steady-state shadow price of the population size, 𝜇∗,  actually may be negative. 

If negative, it means that an additional individual to the population may contribute negatively 

to the present value per capita consumption. The reason for this is that the population evolves 

through the average consumption path while not being controlled directly (e.g., no birth control, 

or no effort aimed to reduce mortality). Accordingly, the population expands until average 

consumption reaches the existence minimum.  

 

When combining (6) and (7’) we obtain: 

 

 (9) 𝐶0/𝐶- = 𝐺′/(𝐹′+ 𝛿). 
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This condition states that land and labour should be allocated such that its marginal rate of 

technical substitution in food production and arable land becomes equal to the relative cost of 

providing these resources in food production while taking RTP into account. Notice that this 

condition does not include any expression of the welfare preferences (i.e., utility) of the 

considered economy. Hence, at least for linear land clearing and land degradation functions, 

and thus constant values of 𝐺 ′and 𝐹′, we find that a higher value of 𝛿 implies a higher steady-

state labour - land food production ratio.  

 

In order to analyse these relationships further, we combine (4’), (3’) and (9) and find after some 

small rearrangements:  

 

(10) M,`
aY
𝑑𝐴∗ = (𝑘 − 𝐶0)𝑑𝑃∗.  

 

Clearly, if 𝑘 > 𝐶0; that is, the steady-state consumption per capita is higher than the marginal 

labour productivity in food production, there is a positive relationship between the steady-state 

population size and the amount of agricultural land. This means that parameter changes that 

lead to a larger population size (say, through a lower value of 𝛿), also will lead to more 

agricultural land (on the extensive margin). It is interesting to note that the condition for this 

rather intuitive relationship between population size and agricultural land is that the net 

contribution of the marginal worker in food production is negative. That is, consumption per 

capita at the extensive margin, 𝐶∗/𝑃∗ = 𝑘, should exceed the marginal contribution of labour 

in food production, 𝐶0. Notice also that if 𝑘 > 𝐶0 together with  𝑍′ > 0 from Eq. (8’) (i.e., the 

unchecked case of population growth), then the population shadow price 𝜇∗ is negative, as was 

noted as a possibility above.  Somewhat more generally it turns out that    is non-positive if 

𝑍′ > 0	and  𝐿/𝑃 < (1 − 𝐶0𝑁/𝐶); that is, if the investment fraction (i.e., the labour – population 

fraction) is less than one minus the output elasticity of labour in food production.  

 

4. Impatience and population size 

In order to analyse the effects of changes in the economic environment further, and especially 

to look at the relationship between population size and RTP, more structure is needed in the 

model. For that reason, we apply Cobb-Douglas functional forms in food production and land 

clearing, i.e., 𝑪 = 𝒒𝟏𝑨𝜶𝑵𝜷and 𝑮(𝑳) = 𝒒𝟐𝑳𝜸, with 𝒒𝟏,	 𝒒𝟐,	𝜶,	𝜷	 and 𝜸 as productivity 

*µ
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parameters. Due to the second order conditions and the concavity of the Hamiltonian, we must 

have (𝜶 + 𝜷) ≤ 𝟏 and 𝜸 ≤ 𝟏. Furthermore, we assume that cultivated land depreciates linearly, 

𝑭(𝑨) = 𝒇𝑨, where 𝒇 is a constant decay rate. Combining (3’) and (10) we then find the land 

clearing labour fraction in our economy as:  

 

(11) 
S∗

;∗
= pqr

s(Mtq)tpqr
. 

 

Under these conditions, the steady-state land clearing investment fraction depends only on the 

given parameters of the model. However, notice that the productivity parameters, 𝑞v and 𝑞3, 

are not included. Condition (11) indicates that a higher 𝛿	and, hence, a larger impatience to 

consume, will   lead to a lower investment fraction (land per individual). The highest investment 

fraction in this economy, thus, takes place when 𝛿 = 0. In this special case it is also observed 

that the land decay rate, 𝑓, no longer plays any role.  

   

Using Eqs. (3’), (4) and (11), steady-state consumption may be expressed as 

 

 (12) 𝐶∗ = 𝑞v >
xy
q
?
p
z pqr
s(Mtq)tpqr

{
rp
z s(Mtq)
s(Mtq)tpqr

{
s
𝑃∗(rpts). 

 

Dividing by the population size and using the steady-state condition	(,
∗

;∗
) = 𝑘, we next find the 

steady-state population size as: 

 

 (13)  𝑃∗(vL(prts)) = x|
}
>xy
q
?
p
z pqr
s(Mtq)tpqr

{
rp
z s(Mtq)
s(Mtq)tpqr

{
s

. 

 

With constant return to scale in food production and decreasing effect in land clearing, or vice 

versa, or decreasing return to scale in both these activities, we find that a higher per capita 

subsistence level, 𝑘, definitely means a lower steady-state population size. On the other hand, 

higher productivity in food production  and land clearing  work in the opposite direction.  

 

Differentiating Eq. (13) implicitly	yields: 

 

(14)  +;
∗

+M
= sMS∗

(vLrpLs)(Mtq)q
. 
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Therefore, with (𝛾𝛼 + 𝛽) < 1 we find 𝜕𝑃∗/𝜕𝛿 < 0,  as illustrated in Figure 1. It also turns out 

that the condition (𝛾𝛼 + 𝛽) < 1is a sufficient condition for 𝑘 > 𝐶0 , and, hence, that the 

population shadow price  𝜇∗ is non-positive. Intuitively a higher value of 𝛿 leading to a lower 

population size in this case makes sense since an impatient population (large value of ) is less 

inclined to invest in agricultural land. Figure 1 also demonstrates the negative population effect 

of a larger natural decay of arable land. Furthermore, it is straightforward to demonstrate that 

the population size is increasing in the food production productivity, 𝑞v, and also in land clearing 

productivity, 𝑞3.  

 

 
 
5. Population development – a numerical illustration 

In the following numerical illustration, we assume that the RTP is reflected in the way the 

community allocates people working with land clearing versus direct food production. Hence, 

a community with a small value of RTP allocates a larger proportion of the population in land 
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clearing and development of agricultural land. We assume that this proportion is an inherent 

trait of the considered community and is fixed as the population evolves over time. The 

correspondence between the particular labour allocation and the RTP is given by the steady-

state condition (11) and is assumed to hold outside steady-state as well. Therefore, the particular 

investment behaviour used in the numerical illustration does not correspond exactly to the 

optimal population development as determined by the optimality conditions (6)-(8). However, 

with the fixed proportion given by the parameters of (11), the resulting steady-state population 

size will be the same as in the optimal model.  In order to illustrate population growth under the 

above simplification, we apply a discrete time version of the model given by:  

 

(15) 𝐶< = 𝑞v𝐴<p𝑁<
s, 

 
      (16)  𝐴<tv = 𝐴< + 𝑞3𝐿<

r − 𝑓𝐴< , 

 

      (17)  ;��|L;�
;�

= 𝑏 ,�
;�
− 𝑎, 

and 

     (1) 𝑃< = 𝐿< + 𝑁<. 

 

Additionally, we have: 

 

    (11) S�
;�
= pqr

s(Mtq)tpqr
. 

 

Notice that Eq. (17) corresponds to the unchecked Malthusian population development with the 

subsistence per capita consumption level given by (𝐶< 𝑃<)⁄ = (𝑎 𝑏).⁄ Hence, the steady-state per 

capita consumption for the simplified model equalizes the subsistence per capita level in the 

general model, i.e., (𝑎 𝑏) = 𝑘	⁄ . The above system can be reduced to the following two 

unilinear first order difference equations in 𝑃<  and  𝐴<  

 

   (18) 𝑃<tv = 𝑏𝑞v𝐴<p(𝑃<(1 − 𝜉))s + 𝑃<(1 − 𝑎)  

and 

   (19) 𝐴<tv = (1 − 𝑓)𝐴< + 𝑞3(𝜉𝑃<)r, 

 

and where 𝜉 = pqr
s(Mtq)tpqr

. 
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It can be confirmed that the system leads to a stable steady-state solution which is independent 

of the initial values of the population size and the size of the agricultural land. The solution is 

illustrated in Figure 2 where it is shown how a low, a medium and a high value of influences 

population growth.  In all these three cases it is assumed similar initial values for the population 

and the size of agricultural land (i.e., three populations of the same size settling in a comparable 

area). A community with a low value of 𝛿 will start by investing more in agricultural land than 

a community with a higher impatience to consume. In the beginning it will therefore experience 

a lower per capita consumption and therefore also a slower population growth than the 

community with the higher value of 𝛿. Figure 2 illustrates that this may actually result in a 

reduction of the population, before it starts to grow. As time passes, however, the investment 

starts to pay off and the per capita consumption of the less impatient population exceeds that of 

the per capita consumption of the more impatient population, as can be seen in Figure 3. Hence, 

it grows more until it, as expected, settles at a higher steady-state level. 
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An important feature of the model is that the initial sizes of the population and agricultural land 

are not decisive for the long run population size. Therefore, if the population is very small 

relative to the size of the initial agricultural land, the population will grow over time before it 

reaches the long run subsistence level. And on the contrary, if the initial population is very large 

relative to the initial size of agricultural land, the population will decline over time before the 

long run subsistence level is reached.  In both these cases, the long run steady-state population 

size will be similar provided that there are no differences in 𝛿.  

 

Next, Figure 3 illustrates consumption per capita levels along the path towards the steady-state 

population size. As can be seen, various maximum levels of consumption per capita may be 

identified depending on the size of 𝛿.  These levels may be taken to correspond to “optimum 

populations” in the sense of Edwin Cannan (1894) and later writers, since average consumption 

is the highest possible. With 𝛿 = 0, the optimum population in this sense would be equal to 99 

instead of 126 for the subsistence level population (Figure 2) and for the case of 𝛿 = 0,5 it 

would be 101 instead of 106. However, in the model considered, such levels of optimum 

population size cannot be sustained unless some harsh checking mechanisms set in at this point 

to prevent the population size and the size of agricultural land to increase further. Rather, with 

unchecked population growth, the population size and the size of agricultural land will, as 

noted, continue to grow until the subsistence consumption per capita level is attained, resulting 

in similar consumption per capita levels, but different long run population sizes (Figure 2).  
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Finally, Figure 4 illustrates a point discussed in the introduction, namely that various cultural 

traits that affect the growth rate of a population may have no effect on the long run steady-state 

population size in a simple agrarian economy. In the model considered, the marginal growth 

rate as a function of consumption per capita is equal to 𝑏 in Eq. (17).  However, to compare two 

populations with different growth rates, a corresponding adjustment is made for the parameter 

𝑎 such that the subsistence consumption per capita level is the same for both populations, 

i.e.,𝑎/𝑏 = 𝑘. For both populations, 𝛿 is set equal to zero. As can be seen in Figure 4, a higher 

growth rate will result in a higher consumption per capita level in the short and medium term 

compared to the case with a lower population marginal growth rate present. However, the 

consumption per capita will sooner fall off attaining a maximum level less than the maximum 

consumption per capita level for the population with the lower growth rate. Notice also that the 

population with the highest growth rate will reach the long run subsistence level population 

faster. 
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Fig. 3. Consumption per capita as a function of time and RTP (𝛿). 
Parameter values as in Fig. 2. 
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6. Summary and concluding remarks 

The existing literature demonstrates that population growth in subsistence agrarian economies 

may vary quite a lot with respect to impatience to consume. While both Thomas Malthus and 

later writers such as John Stuart Mill, Edwin Cannan (1894) and Alexander Carr-Saunders 

(1922) did substantial contributions to study and describe how cultural aspects may explain 

population growth in simple agrarian societies, they did not however address possible effects 

of impatience to consume. As far as we know there is neither any other literature addressing 

this particular point. The goal of the present paper is to fill in this gap, and where a Malthusian 

model   with unchecked population growth of a Millian type (growth depends on consumption 

per capita) is formulated. The population is all the time allocated to either food production or 

to land clearing activities to expand the amount of agricultural land and thus at a later stage 
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Fig. 4. Consumption per capita as a function of time and population 
marginal growth rate. 

Parameter values: Low growth a=0.5, b=1, high growth a= 3, b=6 and 
RTP = 0. Otherwise, parameter values as in Fig. 2.

Low growth

High growth



 17 

increase food production. There is assumed to be no technical progress. Our analysis is, 

therefore, not related to the seminal contribution by Ester Boserup (1965, 1981) that highlights 

the importance of intensification of agricultural production along with population growth that 

leads to induced innovations of better agricultural methods.  

 

Using both the analytical model as well as a numerical illustration, we find that the larger the 

impatience to consume, as represented by the marginal rate of time preference (RTP), the 

smaller the steady-state population size. Hence, the larger the RTP, the lower weight imposed 

on investments in new arable land. The results also show that the higher the decay rate of 

agricultural land, the smaller the subsistence steady-state population size. Furthermore, 

depending on the parameter values of the model, it is possible to identify “optimum population” 

sizes in the sense that the consumption per capita reaches a maximal value. Such levels are, 

however, not sustainable in an unchecked Malthusian model as the population continues to 

grow until the subsistence level is attained. The paper also shows that the parameter describing 

the population growth rate may have no bearing on the resulting subsistence steady-state 

population size. (See also Perrings, 1989, on this point). Given the same consumption per capita 

subsistence level, a population with a higher growth rate only reaches the subsistence steady-

state population size earlier. Also, in the model considered, the population with a high growth 

rate has a lower “optimum population” size than a population with a lower growth rate.     

  

Several related issues not directly captured by the model are worth mentioning. One relates to 

the causes for why impatience of consumption and the propensity to invest may differ.  For 

instance, a consumption and investment strategy that ensures a large population may be 

important in its own right. Hence, a large population may give better protection against nearby 

hostile tribes and also provide better opportunities to organise and carry out large common 

projects (e.g., fortification and irrigation systems). Also, a high propensity to invest, may be 

seen as a strategy to create a resource buffer in the face of uncertainty and variability of natural 

events such as El Niño phenomena and diseases.  

 

Furthermore, there is an interesting discussion in Holden, Shiferaw and Wik (1998 p. 106) on 

the causality of RTP and consumption level, i.e., whether a high RTP induces a low 
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consumption level or the other way around. The authors argue that poverty leads to a high RTP5, 

but recognise that the question of causality is inconclusive. In our model, such a relationship 

would imply changing levels of RTP as the consumption per capita changes along with the 

population growth development.   

 

An issue not taken up here relates to the question of inequality and the existence of feudal elites 

that may capture all surpluses (Darity 1980 p. 145), and how this may affect population growth 

and long run population size. On this point, it is interesting to observe that    John Stuart Mill 

(1848) arrives at the following conclusion: “An unjust distribution of wealth does not even 

aggravate the evil (i.e., the subsistence level) but, at most, causes it to be somewhat earlier 

felt.”6 Hence, according to Mill, an unjust distribution of consumption does not affect the end 

result of population development, i.e., a steady-state subsistence level population.  

 

 

 

 

 

 
5 On this question, see also Pender and Walker (1990) and Pender, (1996, p. 259), and more recently Bartos et al. 
(2018). 
 
6Quotation referred to in Zimmermann (1989).   
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