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Abstract

We consider a model where for-pro�t providers compete in quality in
a price-regulated market that has been opened to competition, and where
the incumbent is located at the center of the market, facing high costs of
relocation. The model is relevant in markets such as public health care,
education and schooling, or postal services. We �nd that, when the regu-
lated price is low or intermediate, the entrant strategically locates towards
the corner of the market to keep the incumbent at the low monopoly qual-
ity level. For a high price, the entrant locates at the corner of the market
and both providers implement higher quality compared to a monopoly.
In any case, the entrant implements higher quality than the incumbent
provider. Social welfare is always higher in a duopoly if the cost of quality
is low. For higher cost levels welfare is non-monotonic in the price and it
can be optimal to the regulator not to use its entire budget. Therefore,
the welfare e¤ect of entry depends on the price and the size of the entry
cost, and the regulator should condition the decision to allow entry on an
assessment of the entry cost.
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1 Introduction

The purpose of this paper is to characterize the market solution and social
welfare when price-regulated markets are opened to competition. This issue
is relevant in markets such as public health care, education and schooling, or
postal services. These markets are typically characterized by a former public
monopoly where the monopolist is already centrally located in the market and
faces high relocation costs.
One example is the Swedish market for compulsory education. This market

was opened up for competition in the early 1990s, with an aim of increas-
ing the educational performance of all children. The market reform (of 1992)
had three pillars: the right for private actors, including for-pro�t companies,
with adequate quali�cations to be o¢ cially recognized as education providers;
voucher-based �nancing of compulsory and upper-secondary education; and an
acknowledgement of the parents�right to select the private or publich school they
want their children to attend. The share of students attending private schools
increased after the reform, reaching approximately 11% in 2009 (Böhlmark and
Lindahl, 2015).
Wondratschek et al. (2013) analyze the e¤ects of the reform, including stu-

dents in both private and public school, using detailed geographical information
on the location of schools and students�residence to construct measures of com-
petition. Speci�cally, the higher the number of schools is within a given radius
around a student�s home, the stronger is the competition.1 The authors �nd
that having one more school within the radius had a positive but small e¤ect on
�nal grades from compulsory school, and that tightening the radius increases
the e¤ect slightly.2

In this paper, we investigate a Hotelling model of price-regulated quality
competition that captures the main characteristics of the market reforms and
is capable of explaining the results of Wondratschek et al. (2013). First, we
consider a case where a monopoly market is opened to a for-pro�t provider.
Second, depending on the parameters of the model, di¤erent types of equilibrium
result. These di¤er in qualities and in the location of the entrant. Quality is
always higher for the entrant, and in equilibria, where the entrant locates in the
interior of the market, the incumbent sticks to the monopoly quality level.
Our model has three stages and three active players: the regulator, the

incumbent provider, and the entrant. At stage 1, the regulator sets the price
aiming to maximize welfare subject to a constrained budget. At stage 2, in case
of entry, the entrant decides where to locate on the Hotelling line, taking the
central location of the incumbent as given. Then, both providers choose non-
veri�able quality at stage 3, not being able to discriminate among customers.

1The authors use the median commuting distance within the municipality as their preferred
measure, but also estimate the e¤ects of a tighter radius (2 km).

2Studies of the reform �nd mixed results of whether competition, measured as a higher
share of students in the municipality attending private schools, raises educational outcomes;
Böhlmark and Lindahl (2007; 2015); Edmark et al. (2014); Hennerdal et al. (2018).
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Finally, customers decide where to buy, trading o¤ the di¤erences in quality
and travel costs. Except from locations, the model is kept symmetric; i.e., both
providers maximize pro�t and face the same cost structure.
We �nd that the entrant chooses a location such that the incumbent sticks

with the monopoly quality level when the regulated price is low or intermediate.
For a high price, the incumbent increases quality and the entrant locates at the
corner of the market. For all cases, the entrant implements higher quality. Our
analysis shows that social welfare is non-monotone in the regulated price. For
low and high prices, social welfare strictly increases in the regulated price. For
intermediate prices, the change in social welfare depends on the marginal cost
of quality. For a high marginal cost, social welfare eventually decreases in the
regulated prices. In this case, the regulator will not use the full budget. This
result follows since the regulator balances the e¤ect of a higher price on the
customers�increased travel cost and their bene�t of higher quality. For all other
cases, the bene�t of higher quality from a higher price outweighs the increase
in travel cost and hence social welfare increases in price. However, it might still
be optimal to retain a part of the budget.
We complete our analysis with exploring the welfare consequences of entry.

It turns out that entry always increases welfare if the cost of quality is small. In
this case, welfare is higher in a duopoly whenever entry is pro�table, since the
travel cost is lower and quality (weakly) higher in a duopoly than in a monopoly.
For intermediate or large levels of this cost, however, the welfare e¤ect of entry
depends on the price and the size of the entry cost. In this case, the customers�
net bene�t from treatment is smaller, while the entrant�s pro�t is larger. As a
consequence, the entrant also enters the market for large levels of the entry cost
that exceed the net bene�t from treatment.
The assumption of a centrally located incumbent is key to our analysis. We

impose this assumption, since public markets such as schools or hospitals used
to be regulated to be a monopoly. A central location is optimal in such a
monopoly when customers are distributed uniformly in space. Moreover, these
incumbents generally chose their location before discussions about market dereg-
ulation started. Providers in these markets often exhibit a substantial relocation
cost, since highly specialized buildings containing school laboratories or oper-
ating theatres are involved. Therefore, a forward-looking entrant will take the
incumbent�s central location as given.
We consider the case where the incumbent operates as a pro�t-maximizing

provider. Hence, either he converts its ownership status from not-for-pro�t to
for-pro�t, or act as a pro�t-maximizer even when he may retain its status as
a not-for-pro�t provider. That is, we follow Easley and O�Hara (1983) and
Glaeser and Shleifer (2001), who use the assumption of noncontractible quality
to motivate the existence of not-for-pro�t �rms. The mechanism is that the
nondistribution constraint on not-for-pro�t �rms limits the ability of not-for-
pro�t �rms to distribute pro�ts to the owner. Therefore, customers may prefer
to purchase from not-for-pro�t �rms. However, if the government does not en-
force the nondistribution constraint, not-for-pro�t �rms might maximize pro�t,
which is what Weisbrod (1988) calls "for-pro�ts-in-disguise."
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Our paper is related to three strands of theoretical literature on competition.
The �rst strand examines the role of competition in improving the performance
of schools, see Epple et al. (2017) for an overview. An early contribution on
voucher programs is Nechyba (1999). In his model, he introduces a private
school market into a local public good economy and shows the importance of
household mobility and general equilibrium e¤ects in predicting the outcomes
for voucher programs. There are, however, no strategic e¤ects of competition
in this model. Barseghyan et al. (2019) consider the e¤ects of competition and
peer preferences on school quality. In the absence of peer preferences, schools
provide higher quality in a competitive environment. However, both schools
choose the same quality level and no students exercise choice in equilibrium.
Unlike in our model, there is no competition along the spatial dimension.
The second strand of literature considers the e¤ects of competition in price-

regulated (hospital) markets. Most of these papers consider models where �rms
are located along a Hotelling line. Brekke et al. (2006) and Bardey et al. (2012)
consider pro�t-maximizing hospitals. Both these papers model competition in
symmetric locations and quality, and analyze the equilibrium outcomes of mar-
kets where the product price is exogenous. Using an extended version of the
Hotelling model, they assume that �rms choose their locations and the quality
of the product they supply. In Brekke et al. (2006) a welfarist regulator sets the
optimal price, and the results depend on whether the regulator can commit to a
price prior to hospitals choosing locations. If this is the case, and transportation
costs are high, the optimal (second-best) price causes overinvestment in quality
and results in an insu¢ cient degree of horizontal di¤erentiation. If the regulator
is not able to make a commitment prior to hospitals choosing locations, the opti-
mal price induces �rst-best quality, but horizontal di¤erentiation is ine¢ ciently
high. The model of Bardey et al. (2012) di¤ers from Brekke et al. (2006) in
that quality increases the variable cost incurred by providers and that the reg-
ulator sets both the regulated price and a cost reimbursement rate. Giving the
regulator an extra instrument (viz. the cost reimbursement rate) will improve
the allocative e¢ ciency in cases with low transportation costs. Besley and Mal-
comson (2018) explore the implications of entry by for-pro�t providers in public
service provision, when there are two (non-veri�able) quality dimensions where
one is also unobserved. In their mixed duopoly, entry by a for-pro�t provider
is bene�cial for providers given that the incumbent not-for-pro�t provider re-
mains active. The intuition is that the for-pro�t-provider supplies markedly
higher quality in the observable dimension to o¤set lower unobserved quality.
Furthermore, they allow the (regulated) prices given to the providers to di¤er
and calculate which provider should be given the highest price.
Our paper is also related to Hehenkamp and Kaarboe (2020), who analyze

the location choice and quality competition in mixed hospital markets. More
speci�cally, they consider the case in which a private hospital considers entering
a market where a public hospital already resides at the center of the market.
The public hospital cares about patients�utility (altruism). An implication of
this is that the non-negative pro�t constraint can become binding in equilib-
rium. Depending on the degree of altruism, the public hospital might implement
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higher quality than the private hospital. Furthermore, for su¢ ciently large bud-
gets, the equilibrium outcome corresponds to the constrained welfare optimum;
i.e., the maximum welfare obtainable when quality is non-veri�able and the reg-
ulator can write a contract on the entrant�s location. Our paper di¤ers from
Hehenkamp and Kaarboe (2020) in that both providers maximize pro�t. One
implication of this assumption is that in the subgame perfect equilibrium, the
entrant always provides higher quality than the incumbent does. Moreover, we
provide a complete welfare analysis, covering all parameter con�gurations, while
Hehenkamp and Kaarboe (2020) only consider the case of a small or large bud-
get. As it turns out, welfare is decreasing for intermediate levels of the price
if the cost of quality is intermediate or large. It follows that in the range of
intermediate prices, entry does not always raise welfare. In this case, the reg-
ulator would need to assess the size of the entry cost to determine the welfare
e¤ect of entry. Our paper di¤ers from the papers of Brekke et al. (2006) and
Bardey et al. (2012) as we examine equilibria in which providers are located
asymmetrically in the market. Finally, the paper di¤ers from Besley and Mal-
comson (2018) as they do not consider a model of product di¤erentiation, as we
consider quality to be observable, and as we do not allow for di¤erential prices
among the providers.
The third strand of literature was initiated by Launhardt (1885) and Ho-

telling (1929) and investigates how competition a¤ects locational choice. While
Hotelling (later shown to be wrong) argues that �rms will locate closely to
each other, d�Aspremont et al. (1979) proved that, under some assumptions,
�rms will locate at a maximal distance from each other.3 In both these papers,
�rms �rst choose locations and then prices to compete for consumers�demand.
In contrast to this literature, we assume prices are regulated and providers
compete in quality. The basic trade-o¤, however, is the same. From a provider�s
perspective, a larger distance softens competition, while moving closer to the
competitor results in an increase in demand, as a provider "steals" customers
away from its competitor. The �rst e¤ect has been called competition e¤ect, the
second demand-stealing e¤ect. Taking the incumbent�s location at the center as
given, the entrant balances these two e¤ects when deciding where to locate in
the market. The regulator in our model sets a uniform price to in�uence the
entrant�s location and the quality levels of the providers in order to maximize the
social welfare subject to a constrained budget. To the best of our knowledge, the
literature has not examined this issue. As it turns out, it can be optimal to the
regulator not to use the full budget, in order to avoid too much di¤erentiation
and too high a transportation cost. Finally, observe that, by the duality result
in Crémer and Thisse (1991), our analysis also bears implications for models
of vertical di¤erentiation where quality is two-dimensional. However, while the
center location of the incumbent has a clear meaning and interpretation in our
model, a �xed quality level in the middle along one of the two quality dimensions
bears an unclear interpretation.

3 In contrast, minimum di¤erentiation results in the set-up of d�Aspremont et al. (1979)
if the survival of �rm strategies is analyzed under an economic evolutionary approach
(Hehenkamp and Wambach, 2010).
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2 The model

We examine a price-regulated market with both horizontal and vertical product
di¤erentiation that has been opened to allow for competition. There are three
active players in the market: the regulator, an incumbent provider (i = 1), and
a potential entrant (i = 2). The incumbent provider used to hold a monopoly
position, which he took at the center of the market. Moreover, he faces a
substantial relocation cost, which is why both the incumbent provider and the
potential entrant commonly know that the incumbent provider 1 will not change
its location in the case of entry.
We consider the following three-stage market game. At stage 1, the regulator

decides whether or not to open the market and allow for entry. If he chooses
to do so, he sets the price P given to the two providers. At stage 2, provider
2 decides whether to enter and where to locate, taking provider 1�s location in
the middle of the market as given. Finally, at stage 3, the active providers in
the market choose their quality level, and customers decide where to receive
one unit of the service. We solve this market game for its subgame perfect
equilibrium.
Customers are uniformly distributed over the unit interval. Living at x 2

[0; 1] ; a customer seeking service at provider i (i = 1; 2) gains a utility

u = s+ qi � t (x� xi)2 ;

where s > 0 denotes the exogenous gross utility from the service, qi � q the
utility of the observable quality of the service at provider i; q the minimum
quality level each provider has to o¤er (set to zero), where t > 0 stands for a
transportation cost parameter, and where xi represents the location of provider
i: Without loss of generality, we assume the entrant locates to the right of the
incumbent, i.e., x1 = 1=2 � x2. Observing the location and quality levels of the
providers, customers choose one of the two providers to maximize their utility.
We assume s > t > 0; which ensures that all customers request the service no
matter where the private provider locates and no matter which quality levels
the providers implement,
Providers earn pro�t from serving customers. Let �i denote provider i�s

pro�t, gross of the entry cost f > 0; and di 2 [0; 1] provider i�s demand.
Provider i�s objective is to choose quality (for i = 1; 2) and location (for i = 2)
to maximize �i subject to pro�t and quality being non-negative, i.e., �i � 0
and qi � 0; respectively. Let P > 0 be the reimbursed price and let parame-
ters k � 0 and c 2 (0; 1) represent the cost of providing quantity and quality,4
respectively. Provider i�s gross pro�t �i is then given by

�i = (P � k � cqi) di:

Since the incumbent provider is already present in the market, his entry cost
is sunk. Without loss of generality, we set k = 0. Correspondingly, in our

4Notice that for c � 1 the marginal cost of quality would weekly exceed its marginal bene�t.
In this case, qi = 0 would be socially optimal and low quality no longer a concern.
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analysis the price P is to be interpreted as the mark-up on the marginal cost
k of quantity. We assume that the cost of quality is related to the services
that customers receive. Other aspects of provider quality, such as investments
in technology and training programs for the sta¤, will typically involve a �xed
cost, which does not �t our speci�cation of the providers�cost function. Taking
into account the above, we rewrite the pro�t function of provider i as

�i = (P � cqi) di: (1)

While the cost f > 0 determines the entry decision of provider 1 at stage 2,
it is sunk upon entry. Accordingly, at stage 3, the non-negative pro�t constraint
of each provider is given by qi � P=c. As a consequence, the price-cost margin
is non-negative. We can hence write provider i�s constrained maximization
problem as

max
qi2[0;Pc ]

(P � cqi) di:

The demand of the two providers depends on locations and quality levels. If
the entrant decides to locate at x2 = 1

2 ; then x1 = x2 and all customers select the
provider with the highest quality. If both qualities coincide, customers distribute
evenly. Correspondingly, the demand of the incumbent and the entrant are given
by

d1 =

8<: 0 if q1 < q2
1
2 if q1 = q2
1 if q1 > q2

(2)

and d2 = 1 � d1; respectively. On the other hand, if the entrant locates away
from the incumbent, x1 6= x2; then the customer �x that is indi¤erent between
seeking treatment at the incumbent or the entrant is characterized by:

s+ q1 � t (�x� x1)2 = s+ q2 � t (�x� x2)2

() �x =
x1 + x2
2

+
q1 � q2

2t (x2 � x1)

() �x =
S

2
+
q1 � q2
2t�

; (3)

where S � x1 + x2 and � � x2 � x1: The demand of providers 1 and 2 is then

d1 = max f0;min f1; �xgg
= min f1;max f0; �xgg

and d2 = 1�d1; respectively. The demand of provider i increases in own quality,
qi; and decreases in the quality level of the competitor, qj ; for j 6= i.
The regulator aims at maximizing social welfare. We de�ne (gross) welfare,

as the customers� utility plus pro�t, minus reimbursement and gross of the
entry cost f . It is assumed that the regulator is given a �xed budget B > 0
by the central government and that quality is observable, but non-veri�able.5

5Quality is non�contractible or non�veri�able if it is observable by the contracting parties
but not veri�able to outsiders, in particular the courts (Grossman and Hart (1986) and Hart
and Moore(1988)).
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Correspondingly, the regulator chooses the reimbursement price, P 2 [0; B] ; to
maximize welfare in the duopoly,

W d =

Z d1

0

�
q1 � t (x1 � x)2

�
dx+

Z 1

d1

�
q2 � t (x2 � x)2

�
dx

+s+
X
i

(P � cqi) di � P; (4)

subject to a constrained budget B; i.e., P � B: In addition, the regulator
decides whether to open the market or not. Opening the market is optimal
when entry raises welfare. Accordingly, for a given entry cost f > 0; the market
will be opened if net welfare in the duopoly, W d�f; exceeds that of the original
monopoly Wm, i.e., if W d � f �Wm.

3 Quality competition

Solving the model by backward induction, we start with deriving the Nash
equilibrium for each quality subgame, proving its existence and uniqueness.
Subsequently, we classify the set of Nash equilibria that arise across di¤erent
subgames according to the levels of quality implemented by the two providers
in the respective Nash equilibrium. We conclude this section by providing a
two-part comparative static analysis on (1) how the equilibrium type changes
with increasing price (for a given location) and (2) how the equilibrium type
depends on the location of the entrant (for a given price).
Let the price P > 0 and the entrant�s location x2 � 1=2 be given, and

consider �rst the case of minimum di¤erentiation, i.e., x2 = 1=2: In this case,
the unique Nash equilibrium has both providers implementing6

q�1 = q
�
2 =

P

c
;

and earning zero (running) pro�t.7

Now consider the case in which the entrant does not locate at the center,
i.e., 1=2 < x2: In this case we have

�1 = (P � cq1) d1

=
1

2t�
(P � cq1) (q1 � q2 + t�S) :

Maximizing �i subject to the non-negative pro�t constraint for providers 1 and
2 yields the following �rst order conditions for interior candidates:

@�i
@qi

=
@ (P � cqi)

@qi
di + (P � cqi)

@di
@qi

= 0;

6As usual we use the superscript � to denote equilibrium values of the various variables.
7Notice that the entrant�s �xed cost of entry is sunk at this point.
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for i; j = 1; 2; and i 6= j: Solving @�i=@qi = 0 for qi, we obtain the best reply
functions of the two providers for interior candidates8 :

qFOC1 (q2) =
P

2c
� t�S

2
+
1

2
q2 (5)

qFOC2 (q1) =
P

2c
� t�(2� S)

2
+
1

2
q1:

Taking the constraints of non-negative quality into account, we get

qBRi (qj) = max
�
0; qFOCi (qj)

	
<
P

c
; (6)

for all qj 2 [0; P=c] ; for i; j = 1; 2; and for j 6= i: Observe that a non-central
location of the entrant always induces a positive pro�t to both the incumbent
and the entrant.9 Building on (5) and (6), we are ready to prove our �rst result:

Proposition 1 (Existence and uniqueness of a quality equilibrium)
For any P > 0 and any x2 2 [ 12 ; 1]; there exists a unique Nash equilibrium
(q�1 ; q

�
2) of the quality subgame. If x2 = 1

2 ; then we have q
�
1 = q�2 =

P
c ; if

x2 2
�
1
2 ; 1
�
; then q�i <

P
c is obtained for both providers i = 1; 2.

Proof. See the Appendix.

While the Nash equilibrium is unique for any quality subgame (P; x2), di¤er-
ent types of Nash equilibria occur across di¤erent quality subgames. We classify
these Nash equilibria as follows:

De�nition 1 (Equilibrium types and regions) Let P > 0 and x2 2 [ 12 ; 1]
be given and suppose (q�1 ; q

�
2) represents a Nash equilibrium of the quality sub-

game. Then we distinguish the following equilibrium types:
Type I: Both providers choose minimum quality, i.e., q�1 = q

�
2 = 0.

Type II: Only the entrant implements positive quality, i.e., q�1 = 0 < q
�
2 < P=c.

Type III: The quality equilibrium is interior, i.e., q�i 2 (0; P=c) for both providers
i = 1; 2.
Type IV: The quality level of both providers is constrained by the non-negative
pro�t condition: q�1 = q

�
2 = P=c:

We say a location x2 lies in equilibrium region � 2 T � fI, II, III, IVg ; denoted
by x2 2 X� ; if location x2 gives rise to a quality equilibrium of the corresponding
type � 2 T :

Intuitively, a higher type number corresponds to a higher level of quality.
Equilibrium type IV occurs if and only if the entrant locates at the center,
x2 =

1
2 ; that is XIV = f1=2g :

Figure 1 displays the various types of quality equilibrium; parts (a) to (c) of
the �gure correspond to equilibrium types I, II, and III, respectively.

8The second order condition for a pro�t maximum is satis�ed for all x2 > 1=2 because of
@2�i=@q

2
i < 0: Moreover, notice that the location of the entrant x2 and the price P only a¤ect

the interceptions of the best reply functions, but not the slope.
9This holds because x2 2 (1=2; 1] implies � > 0 and S � 3=2 and hence qFOC2 (P=c) < P=c:
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Figure 1 to be included here (see pp. 41-43)

We continue with a comparative static analysis of the quality equilibria
across subgames. Taking the price P > 0 as given, Proposition 2 below examines
how the equilibrium type varies with the entrant�s location x2 2 (1=2; 1]:

Proposition 2 (Equilibrium types by price and location) Let P > 0
be given. If x2 = 1=2, then the quality equilibrium is of type IV. For x2 2

�
1
2 ; 1
�
;

the equilibrium type is as follows:

(a) If P > 7ct=12; then type III results for all x2 2
�
1
2 ; 1
�
:

(b) If ct=4 < P � 7ct=12; then type III entails for x2 < �III;II and type II for
x2 2

�
�III;II ; 1

�
; where

�III;II = �1 +
p
3

2t

r
t

c
(4P + 3ct) 2

�
1

2
; 1

�
: (7)

(c) If P � ct=4; then type III occurs for x2 < �III;II , type II for x2 2�
�III;II ; �II;I

�
; and type I for x2 2

�
�II;I ; 1

�
; where

�II;I = 1�
1

2ct

p
c2t2 � 4ctP 2

�
1

2
; 1

�
: (8)

According to Proposition 2, the normal intuition applies. Quality competi-
tion is the more intense the closer the entrant locates to the incumbent. The
entrant can avoid a positive quality level of both providers by locating su¢ -
ciently close to the corner, i.e., at x2 > �II;I : It implements a positive quality,
but keeps the incumbent at zero quality by locating in the intermediate range,
i.e., for x2 2

�
�III;II ; �II;I

�
: Competition becomes intense and both providers

implement positive levels of quality when the entrant locates too close to the
center, i.e., for x2 < �III;II . Moreover, both boundary locations, �III;II and
�II;I , are increasing in price, similarly re�ecting that, for a given location of the
entrant, competition becomes more intense at a higher price.
The three cases of Proposition 2 motivate the following de�nition:

De�nition 2 We call the price P

(a) low for P � ct=4,

(b) intermediate for ct=4 < P � 7ct=12; and

(c) high for P > 7ct=12:

A similar terminology applies to the budget B in (4).

By construction, if the price is low, with varying locations x2 2
�
1
2 ; 1
�
all

equilibrium types I, II and III occur. If the price is intermediate, type I does
not occur for any location x2 2

�
1
2 ; 1
�
. Finally, if the price is high, this implies

an equilibrium of type III no matter where the entrant locates.
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4 Entry and location

We continue with analyzing stage 2. At this stage, the entrant decides whether
to enter and, if so, where to locate. When making this decision, the entrant
takes the price P > 0 and the incumbent�s location at the center of the market
as given and anticipates the consequences of the location choice for the quality
competition at stage 3.
We start with deriving the incumbent�s optimal location, taking entry as

given. To this end, we �rst determine the optimal location within each equilib-
rium region. We then compare the optimal locations across equilibrium regions.
Subsequently, we analyze the conditions for which entry actually occurs.
The incumbent chooses its location x2 2 [1=2; 1] in order to maximize pro�t:

�2 = (P � cq2) d2:

Hence, marginal pro�t is given by10

@�2
@x2

=
@

@x2
((P � cq2) d2)

= �c @q2
@x2

d2 + (P � cq2)
@d2
@x2

;

where q2; d2; and the derivatives depend on the equilibrium region under con-
sideration.
As an example, consider the location choice within equilibrium region I. In

this case, we have q�1 = q
�
2 = 0 and hence d

�
1 = S=2 and d

�
2 = 1�S=2: Therefore,

a change in the location of the entrant only has a direct e¤ect on its demand,
but no indirect e¤ect via a change in quality. As the entrant�s demand decreases
in x2; we have

@�2
@x2

= P
@d2
@x2

= �P
2
< 0:

Thus, within equilibrium region I, the entrant will locate as close to the center
as possible.
The other two cases are analyzed in the Appendix. Proposition 3 below

summarizes our �ndings.

Proposition 3 (Location choice within equilibrium regions) The pro�t
of the entrant strictly increases (strictly decreases) with its location x2;

@�2
@x2

> (<)0;

in equilibrium region III (in equilibrium regions I and II).

10Even though the (reduced) pro�t function of the entrant at stage II represents a function
of a single variable, we use the notation for partial derivatives here to avoid misunderstandings,
given that the symbol d has already been introduced to denote demand.
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Proof. See the Appendix.
Like in the standard Hotelling model, such as analyzed in d�Aspremont et

al. (1979), our model exhibits a trade-o¤ between moving away from the com-
petitor to soften competition (the competition e¤ect) and getting closer to steal
demand (the demand e¤ect). To provide the intuition of Proposition 3, consider
a marginal shift of the entrant�s location to the left, i.e., a small decrease in x2:
In an equilibrium of type I or II, the incumbent does not respond by changing

its quality. That is, the competition e¤ect is weak. Correspondingly, the entrant
moves closer to the center to steal demand from the incumbent. In contrast, in
an equilibrium of type III, the incumbent does respond by raising quality when
the entrant moves closer. Since quality competition is costly, the entrant locates
further away from the center to dampen quality competition.

We continue our analysis by comparing locations across equilibrium types.
First, consider the case of a high price such that all locations x2 2 (1=2; 1] give
rise to an equilibrium of type III. In this case, the above proposition shows that
the entrant optimally locates at x�2 = 1; entailing a positive pro�t of the entrant.
In contrast, pro�t would be zero at x2 = 1=2. Similarly, if the price is low or
intermediate then the monotonicity properties established in the proposition
above suggest that the entrant optimally locates at the boundary of regions II
and III. We thus have:

Proposition 4 (Location choice across equilibrium regions)
(a) If the price is low or intermediate, then the entrant locates at the boundary
of regions II and III, i.e., x�2 = �III;II .
(b) If the price is high, then the entrant locates at the corner x�2 = 1.

Proof. See the Appendix.
Figure 2 displays the entrant�s location choice for the three price ranges that

can occur.

Figure 2 to be included here (see p. 44)

When the price is high, the standard intuition of d�Aspremont et al. (1979)
applies: The competition e¤ect dominates the demand e¤ect and maximum
di¤erentiation results because the equilibrium region III encompasses (almost)
the entire set of the entrant�s feasible locations. When the price is low or
intermediate, maximum di¤erentiation no longer occurs because the competition
e¤ect (as compared to the demand e¤ect) is strong only in region III, but not
in regions I and II.
We complete the analysis of stage 2 with examining the conditions such that

market entry ex ante generates nonnegative pro�t for provider 2 in equilibrium.
In this case, it is optimal to provider 2 to enter the market. Obviously, ex ante
pro�t depends on the price P and on the entry cost f: The next proposition

12



characterizes how the equilibrium pro�t of provider 2 varies with the price P: It
also gives upper limits of the entry cost above which no entry occurs.

Proposition 5 (The entrant�s pro�t) The equilibrium pro�t of provider 2,
��2 (P ) ; is continuous in P: Let the entry cost f > 0 be given.
(a) For low and intermediates prices, ��2 (P ) strictly increases in P and we have
limP!0+ �

�
2 (P ) = 0 and �

�
2 (7ct=12) = 25ct=144: Provider 2 enters the market

if f � ��2 (P ) and stays out otherwise.
(b) For high prices, the pro�t of provider 2 is constant; we have ��2 (P ) =
25ct=144 for all P � 7ct=12. Provider 2 enters for f � 25ct=144 and abstains
from entry otherwise.

Proof. See the Appendix.
If the price is low or intermediate then, for a given level of the entry cost f;

by continuity and positive monotonicity of ��2 (P ) ; there exists a critical pricebP such that entry only occurs above this price. For clarity of the exposition,
we contend ourselves with providing an implicit characterization of this price,
��2(

bP ) = f .11 On the other hand, if the price is high, the entrant locates at
the corner of the market such that any increase in the price does not a¤ect its
location. Furthermore, any increase in the price a¤ects both providers quality
choices in the same way so that the di¤erence in qualities and hence demand
remain constant. Finally, the raise in the price induces the qualities to increase
exactly to the extent that the increase in the cost of quality matches the increase
in the price. Therefore, pro�t remains constant for high prices.
How can the regulator induce entry? By Proposition 5, the entrant�s equilib-

rium pro�t, ��2 (P ), is continuous and strictly increasing from 0 to 25ct=144 for
low and intermediate prices P 2 (0; 7ct=12] : Therefore, for any level of the entry
cost f 0 2 (0; 25ct=144] ; there exists a price P 0 2 (0; 7ct=12] such that provider
2 enters for all prices P � P 0, but not for any price P < P 0. Equivalently,
for any low or intermediate level of the price, P 0 2 (0; 7ct=12] ; there exists a
level of the entry cost f 0 2 (0; 25ct=144] such that entry occurs for any entry
cost f � f 0; while no entry occurs for any entry cost f > f 0: Since for high
prices, P > 7ct=12; the entrant�s pro�t remains constant at its maximum level
��2 (P ) = 25ct=144, no entry occurs for any entry cost f > 25ct=144 at any price
P > 0:

5 Welfare analysis

The regulator should open the market to the entrant if welfare in a duopoly
exceeds the welfare in a monopoly. In the case of a monopoly, the incumbent
provider implements zero quality no matter how large the price is. This follows
from the assumption that quality is non-veri�able. Therefore, welfare in the

11Since pro�t, considered as a function of the price P; can be rewritten as a cubic polynomial,
the explicit expression of bP looks cumbersome.
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case of a monopoly amounts to12

Wm = s� t
Z 1

0

�
1

2
� x
�2
dx = s� t

12
: (9)

We continue with the duopoly case assuming entry occurs. Further below,
we integrate the entry decision into our analysis. Recall net welfare (4), which
is to be maximized subject to a constrained budget B; i.e., P � B: We rewrite
(4) as

W d =
X
i=1;2

(1� c) qidi �
Z d1

0

t

�
1

2
� x
�2
dx�

Z 1

d1

t (x2 � x)2 dx+ s: (10)

The �rst term on the right hand side represents the social bene�t from quality
provision net of the social cost of providing a positive level of quality. The
second and third term stand for the transportation cost of customers served by
providers 1 and 2, respectively. Finally, the gross utility of the service, s; is
constant and hence is neither relevant for maximizing (4) nor is it relevant for
the comparison with welfare in case of a monopoly.
In a duopoly, quality in equilibrium is strictly positive for those customers

served by the entrant. For customers served by the incumbent provider, quality
will be zero for both a low and an intermediate price P � 7ct=12; since in this
case the entrant locates at x�2 = �III;II � 1 and the resulting quality equilibrium
is of type II. In contrast, quality is strictly positive for both the incumbent�s
and the entrant�s customers when prices are high, P > 7ct=12, such that the
boundary location x�2 = 1 gives rise to a quality equilibrium of type III. Thus,
for both a low and an intermediate price, the entrant�s customers bene�t from
increased quality, while for a high price, also the incumbent�s customers receive
higher quality.
For low and intermediate prices P � 7ct=12, an increase in the price P has

two opposing e¤ects on the social net bene�t of quality, i.e., on
P

i=1;2 (1� c) q�i d�i :
On the one hand, it pushes the entrant to raise his quality q�2 (competition ef-
fect). On the other hand, it induces the entrant to locate further away from
the center of the market, implying a lower market share d�2 (demand e¤ect).
A change in the price a¤ects the trade-o¤ between the competition e¤ect and
the demand e¤ect, strengthening the former. Hence, the social net bene�t of
quality is increasing in the price P:13

For a low price P 2 (0; ct=4] ; the entrant locates to the left of 3=4. Therefore,
transportation costs are decreasing in price since an entrant�s customers to his
right face a larger transportation cost than customers to his left. It thus follows
that welfare is increasing for low prices.
For intermediate prices P 2 (ct=4; 7ct=12] ; an increase in the price induces

the entrant to locate further towards the right corner of the market. Hence,
12Observe that the center location minimizes transportation cost and hence represents the

welfare-optimal location in this case.
13Technically, a raise in the price has a linear e¤ect on quality, while the e¤ect on demand

is of order 1=2.
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a trade-o¤ between the social net bene�t of quality and transportation cost
arises. It turns out that, for a low marginal cost of quality c � 5=12; the
marginal social net bene�t of quality exceeds the marginal transportation cost
for all intermediate prices. In contrast, for a higher marginal cost of quality
c 2 (5=12; 1) ; marginal transportation costs eventually exceed the marginal
social net bene�t of quality. In these cases, welfare will eventually decrease in
price.
For high prices P > 7ct=12; the entrant always locates at the boundary

x�2 = 1: While both providers raise quality in response to higher prices, their
market shares do not change. Therefore, transportation costs remain constant.
Since the social net bene�t of quality increases in price so does welfare.
The following proposition summarizes our �ndings.

Proposition 6 (Welfare in duopoly) Let the budget B > 0 be strictly posi-
tive and let W (P ) denote welfare in a duopoly as a function of the price P > 0.

(a) If the budget is low, then welfare strictly increases in price for all P � B:
Spending the full budget maximizes welfare W (P ), i.e., P � = B:

(b) Suppose the budget is intermediate. Then welfare W (P ) is continuous at
P = ct=4; i.e., limP!(ct=4)+W (P ) =W (ct=4) : Moreover, we have:
(i) If c � 5

12 ; then welfare W (P ) strictly increases in price P for all
P < B: Spending the full budget maximizes welfare, i.e., P � = B.
(ii) If c > 5

12 ; then there exists a unique price
bP1 < 7ct=12 such that

W ( bP1) > W (P ) for all P � 7ct=12; P 6= bP1: The welfare-maximizing
price is P � = B for budgets B � bP1 and it is P � = bP1 < B for budgets
B 2 ( bP1; 7ct12 ] (in short, P � = minfB; bP1g). In the latter case, it is welfare-
optimal not to spend the full budget.

(c) Suppose the budget is large. Then welfare W (P ) constitutes an a¢ ne,
strictly increasing function of the price for all P > 7ct=12: Welfare W (P )
is continuous at P = 7ct=12; i.e. limP!(7ct=12)+W (P ) = W (7ct=12) :
Moreover, we have:
(i) If c � 5

12 ; then spending the full budget maximizes welfare W , i.e.,
P � = B:
(ii) If c > 5=12; then there exists a unique bP2 > 7ct=12 such that W ( bP2) =
W ( bP1); where bP1 constitutes the locally optimal price de�ned in part (b)(ii).
For budgets B 2 (7ct=12; bP2); the welfare-optimal price is P � = bP1; for
budgets B > bP2 it amounts to P � = B:

Figure 3 illustrates the welfare-optimal decision of the regulator for the case
of c > 5=12: The graph depicts welfare as a function of the price P: For low
prices P � ct=4; welfare is strictly increasing. For intermediate prices such that
P=ct 2 (1=4; 7=12] ; welfare �rst increases and then decreases in price if the cost
is large (c > 5=12). Welfare is maximal at bP1: For large prices P > 7ct=12;
welfare is linear and strictly increasing in price. Therefore, welfare eventually
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reaches the maximum welfare W ( bP1) of the intermediate range, which occurs
at bP2: Accordingly, for low and intermediate budgets B � bP1; it is optimal
to spend the full budget, i.e., P � = B: In contrast, for intermediate and large
budgets B 2 ( bP1; bP2); the regulator sets P � = bP1 and optimally retains B � bP1
of the budget. Finally, for large budgets B � bP2 spending the full budget is
again optimal.

Figure 3 to be included here (see p. 45)

While Figure 3 suggests that the range between the two critical prices bP2 andbP1 can be quite substantial if the marginal cost of quality is large c 2 (5=12; 1),
this need not be the case. As Proposition 7 shows, the range disappears in
the limit c ! (5=12)+, but strictly increases in c for all levels of marginal cost
c 2 (5=12; 1). Finally, in the limit of c! 1, the range becomes arbitrarily large.

Proposition 7 (Range of non-optimal prices) Let c 2 (5=12; 1) and t > 0
be given arbitrarily. Then the range bP2 (c) � bP1 (c) strictly increases with c 2
(5=12; 1) : Moreover, we have

lim
c! 5

12
+

� bP2 (c)� bP1 (c)� = 0
and

lim
c!1�

� bP2 (c)� bP1 (c)� =1:
As a last step of our analysis, we integrate the entry decision of provider 2

into our welfare analysis. The welfare e¤ect of entry depends on the �xed
cost of entry, f > 0, which in itself represents a welfare cost. To explore the
welfare e¤ect of entry, it is su¢ cient to restrict attention to those levels of the
entry cost f that allow provider 2 to earn a net pro�t given the price P set
by the regulator, i.e. to f � ��2 (P ). This observation motivates the following
de�nition:

De�nition 3 We say entry (of provider 2) always raises welfare at price P > 0
if, and only if, for all levels of the entry cost f > 0, we have14

f � ��2 (P ) =) W d (P )� f �Wm: (11)

According to De�nition 3, it su¢ ces to compare the social welfare in a
monopoly and the social welfare in a duopoly net of the maximum feasible
entry cost of f = ��2 (P ). Whenever entry increases welfare for this maximum
feasible entry cost, it also increases welfare for any entry cost lower than that,
i.e., for f � ��2 (P ) : Equivalently, when entry does not always raise welfare then
14Recall that W d (P ) denotes social welfare at price P gross of the entry cost f .
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welfare in a duopoly falls below welfare in a monopoly for the maximum feasible
entry cost f = ��2 (P ), i.e., we have W

d (P )���2 (P ) < Wm. In the proof of the
following theorem, we draw on this insight to explore the welfare consequences
of entry.15

Theorem Let t > 0 be given arbitrarily.

(a) If c � 5=14 then entry always raises welfare at any price P > 0:

(b) Suppose that 5=14 < c < 1=2: Then there exist price thresholds 0 < �P1 <
7ct=12 and �P2 > 7ct=12 such that (i) entry always raises welfare at any
price P 2

�
0; �P1

�
[
�
�P2;1

�
; while (ii) entry does not always raise welfare

at prices P 2
�
�P1; �P2

�
.

(c) Suppose that c � 1=2: Then there exists a price threshold �P2 > 7ct=12
such that (i) entry always raises welfare at any price P 2

�
�P2;1

�
; while

(ii) entry does not always raise welfare at prices P 2
�
0; �P2

�
.

To provide the intuition underlying the above theorem, observe that equi-
librium pro�t is linear and strictly increasing in the cost c; once it is considered
as function of a standardized price p � P= (ct) : This holds for all levels of the
price P > 0.16 Moreover, we can decompose welfare in a duopoly, W d; into
variable patient bene�t � (p) and transportation cost � (p) as follows:

W d = (1� c)� (p)� � (p) + s:

Accordingly, a change in the cost c directly a¤ects the social net bene�t of qual-
ity, while it in�uences the transportation cost only indirectly via the standard-
ized price p. Consequently, if the cost c is su¢ ciently low, then the equilibrium
pro�t of the entrant will be small in comparison to the social net bene�t of
quality for all levels of the price, since the direct e¤ect of a change in cost dom-
inates the indirect e¤ects through the price. Since welfare in monopoly does
not depend on the price, entry always raises welfare in this case (part (a)). In
contrast, if the cost is su¢ ciently large, then the social net bene�t of quality
becomes quite small and the entrant�s pro�t large. In this case, entry does not
always raise welfare for low and intermediate prices. However, for large prices,
equilibrium pro�t of the entrant is constant in p; while the social net bene�t
of quality � (p) is a¢ ne and strictly increasing in p: Therefore, for prices su¢ -
ciently large, the welfare di¤erence between duopoly and monopoly exceeds the
entrant�s pro�t eventually. Hence, entry always raises welfare for large prices
(part (c)). Finally, if the cost c is intermediate, then equilibrium pro�t of the
entrant falls below the welfare di¤erence between duopoly and monopoly for

15Notice that the critical prices derived in the theorem do not coincide with those of Propo-
sitions 6 and 7.
16See equations (22) and (26) in the appendix.
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small prices (like in part (a)). For intermediate prices, the entrant�s pro�t ex-
ceeds this welfare di¤erence. Hence, for levels of the entry cost in between, entry
occurs but reduces welfare. For larger prices the intuition of part (c) applies.17

To sum up, if the cost is low, opening the market always increases welfare.
If the cost is intermediate or large, then the regulator can ensure that entry
always raises welfare by setting the price su¢ ciently large. In case the budget
would not allow to set the price accordingly, it depends on the actual entry cost,
whether entry raises welfare. In this case, the regulator should condition the
decision to allow entry on an assessment of the entry cost. It should permit
entry for levels of the entry cost f 2

�
0;W d (P )�Wm

�
; while for larger levels

of f entry should be prohibited.

6 Conclusion

In this paper, we introduce a model where for-pro�t providers compete in quality
in a price-regulated market that has been opened to competition and where
the incumbent is located at the center of the market and faces high costs of
relocation. We �nd that the entrant locates away from the incumbent to soften
quality competition. For low and intermediate prices (budgets), the incumbent
will not raise quality, which is in contrast to what politicians typically will
expect from such a reform. Excluding the entry cost, however, social welfare in
the duopoly is higher than in the original monopoly. This result follows since
entry reduces customers�transportation costs and since the entrant implements
strictly higher quality than the incumbent. To obtain the positive welfare e¤ect
of competition, the regulator sometimes has to retain a part of the budget,
which can be challenging to defend in the public domain.
Once the �xed entry costs are taken into account, a more complex picture

emerges. For low levels of the variable quality cost, the social bene�t from
treatment exceeds the entrant�s pro�t (gross of the entry cost). Therefore,
entry entails an increase in social welfare. For intermediate and large levels of
the quality cost, the entrant�s pro�t surpasses the social bene�t from treatment
for certain ranges of the price. Then, opening the market reduces social welfare
if the entry cost is large, but just falls below the entrant�s pro�t. In this case,
the regulator would optimally condition the admission of market entry on an
estimate of the entry costs.
We have assumed that the incumbent operates as a pro�t-maximizing pr-

ovider. Hence, either the provider operates as a for-pro�t in disguise or the
incumbent converts its ownership from not-for-pro�t to a for-pro�t status. In
the US, such conversions of ownership are not uncommon. For example, 700
conversions of hospital ownership took place between 1985-99, most of these from
non-for-pro�t to for-pro�t (Shen, 2002) and 237 hospitals converted from not-
for-pro�t to for-pro�t between 2003-10 (Joynt et al., 2014). In the educational

17As the proof of the theorem reveals, the interval
�
0; �P1

�
collapses for c � 1=2. In this case,

the welfare di¤erence between duopoly and monopoly �rst falls below the entrant�s pro�t for
all prices P 2

�
0; �P2

�
; and it exceeds the entrant�s pro�t for all prices P > �P2:
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sector, 40 of the 58 conversions of US postsecondary educational institutions
that occurred from 2004-09 were from not-for-pro�t to for-pro�t (Fox Garrity
and Fiedler, 2016). What motivates these conversions? One reason might be
that a legal or a market constraint that a provider faces is changing, and that
the change implies heterogeneous e¤ects on the ownership types. For example,
lowering the tax rate for-pro�t hospitals faces reduces the �nancial bene�t of
maintaining a non-for-pro�t status. On the other hand, increased competition
or changes in the �nancing system might lead to �nancial losses and a need for
not-for-pro�t providers to increase the focus on the �nancial constraints.
Joynt et al. (2014) consider the e¤ects of hospital conversion to for-pro�t sta-

tus on �nancial performance and quality of care for Medicare inpatient care. For
these patients Medicare pays hospitals a �xed price per patient discharge using
the Inpatient Prospective Payment System18 . Using a di¤erence-in-di¤erence
approach the authors �nd that hospitals that converted to for-pro�t status im-
proved their �nancial performance and that their quality of care including mea-
sures of mortality rates, remained unchanged.19 The hospitals that converted
to for-pro�t status had very poor �nancial performance prior to the conver-
sion. The rationale for the conversion was most likely the need to improve the
�nancial performance.
As mentioned in the introduction, the empirical studies of the Swedish edu-

cational reform �nd mixed results of whether competition, measured either by
the share of students in the municipality attending private schools or as the
number of schools within a given radius around a student�s home, raise edu-
cational outcomes (Böhlmark and Lindahl, 2007, 2015; Edmark et al., 2014;
Hennerdal et al., 2020; Wondratschek et al., 2013). Speci�cally, they �nd ei-
ther no or a small positive e¤ect on educational outcomes. Our results show
that this is to be expected as the entrant locates away from the incumbent to
soften quality competition. This often results in no quality improvements for
the incumbent �rm and only a slightly higher quality level of the entrant. Only
when the price is high, our model predicts higher equilibrium quality of both
providers. Finally, our model is consistent with the evidence that the private
educational providers implement higher quality (Böhlmark and Lindahl, 2007).
A limitation of our model is that we do not include a �xed cost of quality

provision. Expanding the model�s relevance by including such a �xed cost would
cause problems with the existence of pure strategy equilibria in the quality
competition subgame when the entrant locates close to the incumbent. From
the literature on the Bertrand model, we know that mixed strategy equilibria
still exist when there is such a �xed cost. However, when there is a substantial
cost of relocation it is hard to imagine that providers follow mixed strategies
(Dastidar, 1995).

18See e.g. Cubanski et al. (2015).
19Studies of the conversions in the 1990 �nd that quality is reduced after conversions to for-

pro�t status (Picone et al, 2002; Shen, 2002). The regulatory framework is however di¤erent
between the 1990s and the latter years, with current policies focusing on monitoring, reporting
and rewarding quality.
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Appendix

Proof of Proposition 1. Consider x2 = 1=2 �rst. In this case, by dis-
continuity of the provider-speci�c demand function (2), a standard Bertrand
type of argument shows the existence and uniqueness of the Nash equilibrium
(q�1 ; q

�
2) = (P=c; P=c).
Now consider x2 2 (1=2; 1] : Notice that the best reply curves (6) are weakly

increasing. Therefore, Tarski�s �xed-point theorem yields the existence of a Nash
equilibrium (q�1 ; q

�
2) (Tarski, 1955). To show that this equilibrium is unique, the

following Lemma turns out helpful.

Lemma 1 Let qBRi (qj) be given by (6) and q0; q00 2 Q � [0;1)2 such that
q0 = (q01; q

0
2) and q

00 = (q001 ; q
00
2 ). Then we have:

(i) If q01 = q
BR
1 (q02) and q

0
2 � q002 ; then qBR1 (q002 ) � q01 + (q002 � q02) =2:

(ii) If q02 = q
BR
2 (q01) and q

0
1 � q001 ; then qBR2 (q001 ) � q02 + (q001 � q01) =2:

Proof of Lemma 1. Choose q0; q00 2 Q arbitrarily.
To prove part (i), let q01 = q

BR
1 (q02) and q

0
2 � q002 : We need to show that

qBR1 (q002 ) � qBR1 (q02) +
1

2
(q002 � q02) : (12)

First, consider the case qFOC1 (q002 ) � 0: If qFOC1 (q002 ) � 0; then q02 � q002
implies that qFOC1 (q02) � qFOC1 (q002 ) � 0 and hence qBR1 (q002 ) = qBR1 (q02) = 0:
Therefore, the inequality is satis�ed.
Second, consider qFOC1 (q002 ) > 0: On the one hand, if qFOC1 (q02) > 0 then

qBR1 (q002 ) � qBR1 (q02) = qFOC1 (q002 ) � qFOC1 (q02) =
1
2 (q

00
2 � q02) and inequality

(12) holds with equality. On the other hand, if qFOC1 (q02) � 0 then we have
qBR1 (q002 ) = q

FOC
1 (q002 ) and q

BR
1 (q02) = 0: In this case, inequality (12) reduces to

qFOC1 (q002 ) =
P

2c
� tS�

2
+
1

2
q002 �

1

2
(q002 � q02) ;

which is equivalent to qFOC1 (q02) � 0 and hence satis�ed.
Part (ii) can be shown similarly.

We continue with proving uniqueness. Let q0; q00 2 Q both be Nash equilibria
of the quality subgame and suppose that q01 � q001 (w.l.o.g.). On the one hand,
as qBR2 (q1) is weakly increasing, it follows that q02 � q002 : On the other hand, the
above Lemma implies that

q001 � q01 +
1

2
(q002 � q02) and

q002 � q02 +
1

2
(q001 � q01) :

Rewriting the �rst inequality as

1

2
(q001 � q01) �

1

4
(q002 � q02)
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and combining it with the second inequality, we obtain

q002 � q02 +
1

4
(q002 � q02) ;

which is equivalent to q002 � q02: We have thus shown that q
0
2 = q002 : Since the

best reply correspondences are single-valued, it moreover follows that q01 =
qBR1 (q02) = q001 = qBR1 (q002 ) and hence q

0 = q00; which shows uniqueness of the
Nash equilibrium. �

Proof of Proposition 2. Let P > 0 be arbitrary and let q� = (q�1 ; q
�
2)

denote the unique Nash equilibrium of the quality game. The case x2 = 1=2 is
fully covered by Proposition 1. Therefore, consider x2 2 (1=2; 1]. The proof is
divided into two parts. We �rst derive three conditions on the price and the
entrant�s location such that, for each of these conditions, one of the equilibrium
types I, II or III results, respectively. Subsequently, we establish parts (a) to
(c) of the proposition.
The table below summarizes the relationship between the conditions and the

equilibrium types. For brevity, we set p := P= (ct) > 0:

Type Condition Quality equilibrium
I p � �(2� S) q�1 = q

�
2 = 0

II �(2� S) < p � �(S + 2) =3 q�2 > q
�
1 = 0

III �(S + 2) =3 < p q�2 > q
�
1 > 0

Notice that the conditions partition the set of possible cases, because x2 2
(1=2; 1] implies �(2� S) < �(S + 2) =3:
First, consider p � �(2� S) : In this case, the �rst order conditions (5)

imply

qFOC2 (0) =
P

2c
� t�(2� S)

2
=
t

2
(p��(2� S)) � 0:

By (6), it hence follows that qBR2 (0) = 0: Moreover, S > 2� S implies

qFOC1 (0) =
P

2c
� t�S

2
=
t

2
(p��S) < t

2
(p��(2� S)) � 0

and hence qBR1 (0) = 0: Thus, the equilibrium is of type I.
Second, let �(2� S) < p � �(S + 2) =3: By the above, the �rst inequality

implies

qFOC2 (0) =
t

2
(p��(2� S)) > 0 (13)

and hence qBR2 (0) = qFOC2 (0) > 0: In addition, we have

qFOC1

�
qFOC2 (0)

�
=

P

2c
� t�S

2
+
1

2
qFOC2 (0)

=
t

2
(p��S) + t

4
(p��(2� S))

=
3t

4

�
p� �(S + 2)

3

�
� 0;
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which implies qBR1
�
qFOC2 (0)

�
= 0: Thus, the equilibrium is of type II.

Finally, consider p > �(S + 2) =3: Observe that the solution to the �rst
order conditions (5) is given by

qFOC1 =
P

c
� t�(S + 2)

3

qFOC2 =
P

c
� t�(4� S)

3
: (14)

Moreover, x2 > 1=2 implies qFOC2 > qFOC1 and p > �(S + 2) =3; in turn, implies
qFOC1 = t (p��(S + 2) =3) > 0: Thus, the equilibrium is of type III.

Part (a): Let P > 7ct=12 or, equivalently, p > 7=12: Notice that�(S + 2) =3
is increasing in x2 and that �(S + 2) =3 � 7=12 because of x2 � 1: It hence
follows that p > �(S + 2) =3 for all x2 2 (1=2; 1] : Thus, equilibrium type III
results in this case.
Part (b): Suppose that ct=4 < P � 7ct=12; which is equivalent to 1=4 <

p � 7=12: Because of �(2� S) � 1=4 for all x2 2 (1=2; 1] ; it follows that
�(2� S) < p; which implies that the equilibrium can be either of type II or
of type III. Moreover, since �(S + 2) =3 2 (0; 7=12] is increasing in x2; there
exists a �III;II 2 (1=2; 1] such that

1

3

�
�III;II �

1

2

��
�III;II +

5

2

�
= p: (15)

For x2 � �III;II we have �(S + 2) =3 � p; which implies that the equilibrium
is of type II. In contrast, for x2 < �III;II we have �(S + 2) =3 < p and the
equilibrium is of type I. Solving (15) for �III;II 2 (1=2; 1] and inserting p =
P= (ct) ; we obtain

�III;II = �1 +
p
3

2t

r
t

c
(4P + 3ct);

which assumes values in
�
�1 +

p
3; 1
�
for P 2 (ct=4; 7ct=12].

Part (c): Finally, consider P � ct=4; i.e., p � 1=4: In this case, the equilib-
rium is of type I if p � �(2� S). Notice that �(2� S) 2 (0; 1=4] is increasing
in x2: Consequently, there exists a �II;I 2 (1=2; 1] such that�

�II;I �
1

2

��
3

2
� �II;I

�
= p: (16)

For x2 � �II;I ; we have �(2� S) � p: Hence the equilibrium is of type I. For
x2 < �II;I the equilibrium is either of type II or of type III. By part (b), it is of
type II for x2 2

�
�III;II ; �II;I

�
and of type III for x2 2

�
1=2; �III;II

�
: Solving

(16) for �II;I 2 (1=2; 1] and inserting p = P= (ct) ; we obtain

�II;I = 1�
1

2ct

p
c2t2 � 4ctP ;
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which assumes values in (1=2; 1) for P 2 (0; ct=4] :Moreover, observe that �II;I >
�III;II in this range of P:

�

Proof of Proposition 3. Let P > 0 and x2 2 (1=2; 1] be given arbitrarily
and let q� = (q�1 (x2) ; q

�
2 (x2)) denote the corresponding quality equilibrium that

results at stage 3. Correspondingly, let �2 (x2) � �2 (q�1 (x2) ; q�2 (x2)) denote the
reduced pro�t function of the entrant at stage 2. The entrant chooses x2 in order
to maximize pro�t, �2 (x2) = (P � cq�2 (x2)) d�2 (x2) ; where equilibrium demand
d�2 (x2) is given by

d�2 (x2) = 1�
1=2 + x2

2
� q

�
1 (x2)� q�2 (x2)
2t (x2 � 1=2)

: (17)

Hence, marginal pro�t �02 (x2) is given by
20

�02 (x2) =
@

@x2
((P � cq�2) d�2)

= �c @q
�
2

@x2
d�2 + (P � cq�2)

@d�2
@x2

:

In the following, we derive the sign of the entrant�s marginal pro�t, �02 (x2) ;
for each of the di¤erent equilibrium regions separately. For any � 2 T �
fI; II; IIIg, let X� and Q� denote the set of locations x2 and the set of quality
equilibria q� (x2) = (q�1 (x2) ; q

�
2 (x2)) corresponding to equilibrium type � 2 T ;

respectively.
Type I: Consider a location in equilibrium region I, i.e., x2 2 XI : Then,

we have q�1 (x2) = q�2 (x2) = 0 in the corresponding quality equilibrium, which
implies @q�2 (x2) =@x2 = 0; d

�
2 (x2) = 3=4� x2=2; and hence

�02 (x2) = P
@d�2
@x2

< 0:

Type II: Consider x2 2 XII : By de�nition, we have q�1 (x2) = 0 and q�2 (x2) =
qBR2 (0) = P= (2c)� t�(2� S) =2 > 0: Inserting q�1 (x2) and q�2 (x2) in (17), we
get

d�2 (x2) = 1� S
2
+
q�2 (x2)

2t�

=
P + ct�(2� S)

4ct�
:

Consequently, pro�t �2 (x2) reduces to

�2 (x2) =

�
P � c

�
P

2c
� t�(2� S)

2

��
P + ct�(2� S)

4ct�

=
(P + ct�(2� S))2

8ct�
:

20For boundary locations x2, �02 (x2) denotes the relevant one-sided derivative: e.g. for
x2 = 1; we have �02 (x2) � �02(x

�
2 ) = limh!0� (�2 (x2 + h)� �2 (x2)) =h:
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Calculating �02 (x2) ; we obtain

@�2
@x2

=
@�2
@S

@S

@x2|{z}
=1

+
@�2
@�

@�

@x2|{z}
=1

=
@�2
@S

+
@�2
@�

< 0;

where the strict inequality follows from

@�2
@�

= �P
2 � t2�2c2 (2� S)2

8t�2c
< 0

and
@�2
@S

= �1
4
(P + (2� S) t�c) < 0:

The �rst expression is strictly negative, since we have P > ct�(2� S) in equi-
librium region II. The second expression is strictly negative because of P > 0;
S � 3=2 and � > 0: Thus, �02 (x2) < 0:
Type III: Consider x2 2 XIII . In equilibrium region III, the quality equilib-

rium is given by the solution to (5),

q�1 (x2) =
P

c
� t�(S + 2)

3

q�2 (x2) =
P

c
� t�(4� S)

3
:

This solution yields a quality gap of

q�1 (x2)� q�2 (x2) = �
2t�(S � 1)

3
:

Inserting the quality gap in (17), we get

d�2 (x2) = 1�
S

2
� q

�
1 (x2)� q�2 (x2)

2t�
=
2

3
� S
6

and hence

�2 (x2) = (P � cq�2 (x2)) d�2 (x2)

=

�
P � c

�
P

c
� t�(4� S)

3

���
2

3
� S
6

�
=

ct�

18
(4� S)2 :

To establish �02 (x2) > 0; we derive

@�2
@x2

=
@�2
@S

@S

@x2
+
@�2
@�

@�

@x2
=
@�2
@S

+
@�2
@�

= �ct�
9
(4� S) + ct

18
(4� S)2

=
ct

18
(4� S) (4� 2�� S) ; (18)
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which is strictly positive for any location x2 2 (1=2; 1] and the corresponding
quality equilibrium of type III. �

Proof of Proposition 4. Let P > 0 and suppose �III;II is given by (7).
Furthermore, let x2 2 [1=2; 1] be given arbitrarily and let q� = (q�1 (x2) ; q�2 (x2))
denote the corresponding quality equilibrium that results at stage 3. Corre-
spondingly, let �2 (x2) = �2 (q�1 (x2) ; q

�
2 (x2)) denote the reduced pro�t function

of the entrant at stage 2. The entrant chooses x2 in order to maximize pro�t,
�2 (x2) = (P � cq�2 (x2)) d�2 (x2) ; where equilibrium demand d�2 (x2) is given by
(17). Let x�2 2 [1=2; 1] denote this pro�t maximizing location.
As a preliminary, observe that �2 (1=2) = 0 and �2 (x2) > 0 for all x2 2

(1=2; 1] : Consequently, the entrant never �nds it optimal to locate at the center,
i.e., x�2 > 1=2:
Part (a): Suppose the price is low or intermediate, i.e., P � 7ct=12: In

this case, we have �III;II 2 (1=2; 1] : Consider x2 <
�
1=2; �III;II

�
�rst. By

Proposition 2, the quality equilibrium is of type III. Hence, by Proposition 3,
we have �02 (x2) > 0: Now, consider x2 2

�
�III;II ; 1

�
: By Proposition 2, the

quality equilibrium is either of type I or of type II. Hence, by Proposition 3,
we have �02 (x2) < 0: By continuity of the reduced pro�t function �2 (x2) at
x2 = �III;II we thus obtain �2

�
�III;II

�
� �2 (x2) for all x2 2 (1=2; 1] :

Part (b): Suppose the price is high, i.e., P > 7ct=12: Then Proposition 2(a)
implies that the quality equilibrium is of type III for all x2 2 (1=2; 1] : By
Proposition 3, it hence follows that �02 (x2) > 0 for all x2 2 (1=2; 1] : Thus,
x�2 = 1 maximizes the entrant�s pro�t in this case. �

Proof of Proposition 5. Let f > 0 be given arbitrarily. Further below,
we derive explicit expressions of ��2 (P ), �rst for the case of low and intermediate
prices, then for the case of high prices (see equations (22) and (26), respectively).
From these expressions, it can be easily seen that ��2 (P ) is continuous in P .
Part (a): Let P be low or intermediate, that is, p := P= (ct) � 7=12: It

follows from Proposition 4 that the entrant locates at x�2 = �III;II given by (7),
which yields a quality equilibrium of type II. We hence have q�1 = 0 and, from
(13), we obtain

q�2 =
t

2
(p��(2� S))

=
t

2

�
P

ct
�
�
�III;II �

1

2

��
3

2
� �III;II

��
= t

 
3�

r
9 + 12

P

ct
+ 2

P

ct

!
: (19)
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Inserting x�2; q
�
1 and q

�
2 into (17), we get

d�2 =
3

4
� 1

12

s�
12
P

ct
+ 9

�
and (20)

d�1 =
1

4
+
1

12

s�
12
P

ct
+ 9

�
: (21)

From (19) and (20), it hence follows that

��2 (P ) = (P � cq�2) d�2

=

 
P � c

 
3t�

p
3

r
3t2 + 4

P

c
t+ 2

P

c

!! 
3

4
� 1

12

p
3

t

r
3t2 + 4

P

c
t

!

= ct

 r
9 + 12

P

ct
� 3� 7

4

P

ct
+
1

12

P

ct

r
9 + 12

P

ct

!
: (22)

Strict monotonicity of ��2 (P ): Consider the derivative of (22),

��02 (P ) = ct

q
4Pct + 3

4 (4P + 3ct)

 
2
p
3
P

ct
� 7
r
4
P

ct
+ 3 + 9

p
3

!
:

Because of c > 0 and t > 0; the �rst factors are strictly positive. We show that
the term in parantheses is strictly positive as well. To this end, consider the
following equivalent transformations:

2
p
3
P

ct
� 7
r
4
P

ct
+ 3 + 9

p
3 > 0

p
3
�2 � 3
2

� 7�+ 9
p
3 > 0

�2 � 14p
3
�+ 15 > 0; (23)

where, from the second to the third line, we have deployed the transformation
� � (4P= (ct) + 3)

1=2 (which is equivalent to P= (ct) =
�
�2 � 3

�
=4) for P 2

(0; 7ct=12] or � 2
�p
3; 4=

p
3
�
). We show that the last inequality indeed holds

true. Set f (�) = �2 � 14�=
p
3 + 15: It turns out that f (�) is strictly decreasing

for � 2
�p
3; 4=

p
3
�
; because we have

f 0 (�) = 2�� 14
3

p
3 � 2 � 4p

3
� 14
3

p
3 = �2

p
3 < 0

for � � 4=
p
3. Then the claim follows from f (�) � f

�
4=
p
3
�
= 5=3 > 0:

Limit behavior : First, taking the limit P ! 0+ of ��2 (P ) ; we obtain

lim
P!0+

 
p
3c

r
3t2 + 4

P

c
t� 3ct� 7

4
P +

1

12

p
3
P

t

r
3t2 + 4

P

c
t

!
= 0:
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Second, inserting P = 7ct=12 in ��2 (P ) ; we get"
p
3c

r
3t2 + 4

P

c
t� 3ct� 7

4
P +

1

12

p
3
P

t

r
3t2 + 4

P

c
t

#
P=7ct=12

=
25

144
ct

Part (b): Now, suppose the price is high, i.e. p = P= (ct) > 7=12: Proposition
4 implies that x�2 = 1; which entails � = 1=2 and S = 3=2: By Proposition 2(a),
the quality equilibrium is of type III and, from (14), we hence obtain

qFOC1 =
P

c
� t�(S + 2)

3
=
P

c
� 7

12
t and

qFOC2 =
P

c
� t�(4� S)

3
=
P

c
� 5

12
t: (24)

Using these expressions, demand reduces to

d1 =
S

2
+
qFOC1 � qFOC2

2t�
=
7

12
and

d2 = 1� d1 =
5

12
; (25)

respectively. Observe that demand does not depend on the price P; while quality
levels do so. Consequently, the entrant�s pro�t reduces to

��2 = (P � cq�2) d�2 =
5ct

12

5

12
=
25

144
ct (26)

�

Proof of Proposition 6. Let B > 0 be arbitrary and let W (P ) denote
welfare as a function of the price P > 0. To prepare our analysis of parts (a)
and (b), we �rst investigate the properties of the welfare function when the price
is small or intermediate. Subsequently, we prove parts (a) to (c).
Let p := P= (ct) � 7=12 denote the transformed price. In this case the

entrant�s location x�2 = �III;II and the quality level q
�
2 are given by (7) and (19),

respectively, yielding demands (21) and (20). With slight abuse of notation, we
rewrite welfare (10) as a function of the transformed price p and decompose it
into (variable) patient bene�t �(p) and transportation cost �(p) as follows:

W (p) = (1� c) q�2d�2 �
 Z d�1

0

t (1=2� �)2 d� +
Z 1

d�1

t (x�2 � �)
2
d�

!
+ s

= (1� c)�(p)� �(p) + s; (27)

where we set

�(p) = q�2d
�
2 and (28)

�(p) =

 Z d�1

0

t (1=2� �)2 d� +
Z 1

d�1

t (x�2 � �)
2
d�

!
: (29)

30



To explore the properties of welfare, we �rst examine those of patient bene�t
and transportation cost separately. Inserting (19) and (20), patient bene�t (28)
reduces to

�(p) = t

�
3 +

5

2
p�

p
12p+ 9� 1

6
p
p
12p+ 9

�
: (30)

We show that patient bene�t �(p) is strictly increasing and strictly convex in p
for p � 7=12: To this end, consider the �rst and second derivative,

�0(p) = �1
6
t

p
3 (4p+ 3) + 2

p
3p� 15

p
4p+ 3 + 12

p
3p

4p+ 3
and (31)

�00(p) = t

 
4
p
3

(4p+ 3)
3
2

� 2
p
3

3
p
4p+ 3

+
2
p
3p

3 (4p+ 3)
3
2

!
= t

2
p
3 (1� p)�p
4p+ 3

�3 :
For a low price, p � 7=12; we have �00(p) > 0, that is, patient bene�t is strictly
convex. Hence, �0(p) is strictly increasing for p � 7=12. To show �0(p) > 0 for
all p 2 (0; 7=12] it is therefore su¢ cent to see that limp!0+ �

0(p) = 0: Thus,
patient bene�t is strictly increasing and strictly convex for p 2 (0; 7=12].
We continue with establishing that transportation cost is strictly decreasing

for p � 1=4 and strictly convex for p 2 (0; 7=12] : To this end, we �rst simplify
(29):

� (p) =

 Z d1

0

t (1=2� �)2 d� +
Z 1

d1

t (x2 � �)2 d�
!

=
t

12

�
12d21x2 � 6d21 � 12d1x22 + 3d1 + 12x22 � 12x2 + 4

�
=

t

12

�
81

2
p� 18

p
12p+ 9� 5

2
p
p
12p+ 9 + 55

�
; (32)

where, in the last row, we have inserted (21) and x2 = �III;II given by (7). As
to the �rst and second derivative of �(p); we obtain

� 0(p) = � t

12

 
36
p
3p

4p+ 3
+
5
p
3

2

p
4p+ 3 +

5
p
3pp

4p+ 3
� 81
2

!
; (33)

� 00(p) =
t

2

p
3 (7� 5p)
(4p+ 3)

3
2

:

Clearly, we have � 00(p) > 0 for p 2 (0; 7=12] : Hence, �(p) is strictly convex in
this range of p. To show � 0(p) < 0 for small prices p 2 (0; 1=4] ; it is therefore
su¢ cient to see that � 0 (1=4) = 27t=8� 63

p
3t=32 < 0 for t > 0:

It follows that, for p 2 (1=4; 7=12] ; transportation cost �(p) assumes its
maximum at the upper boundary, i.e., for p = 7=12. By strict convexity of �(�);
it is su¢ cient to compare � (1=4) and � (7=12) : Calculating these values, we get

lim
p! 1

4
+
� (p) =

�
521

96
� 149
48

p
3

�
t and �

�
7

12

�
=
19

288
t:
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Since the second value is larger, it follows that

� (p) � 19

288
t; (34)

where the inequality holds strictly for all 1=4 < p < 7=12:
Finally, we insert (30) and (32) into (27), to simplify welfare net of the gross

bene�t from treatment s:

W (p)� s
= (1� c)�(p)� �(p) (35)

= (1� c) t
�
3 +

5

2
p�

p
12p+ 9� 1

6
p
p
12p+ 9

�
� t

12

�
81

2
p� 18

p
12p+ 9� 5

2
p
p
12p+ 9 + 55

�
=

t

24

�
(p (1 + 4c) + 12 (1 + 2c))

p
12p+ 9� (21 + 60c) p� 72c� 38

�
:

Calculating the �rst and second derivative of welfare with respect to the trans-
formed price p, we obtain

W 0(p) = t

p
3 (20c+ 9 + (2 + 8c) p)� (7 + 20c)

p
4p+ 3

8
p
4p+ 3

(36)

W 00(p) = t

p
3

2

((p� 1) (1 + 4c)� 2)
(4p+ 3)

3
2

;

the latter of which is strictly negative for all p � 7=12: Thus, welfare is strictly
concave for small and intermediate prices.
Part (a): Suppose B is small, i.e., B � ct=4: By the above, it follows that

� 0(p) < 0 and �0(p) > 0, since P � B implies P � ct=4. Thus, W 0(p) > 0 for
all p � 1=4, that is, P � = B maximizes welfare.
Part (b): Suppose B is intermediate, i.e., ct=4 < B � 7ct=12; and consider

c 2 (0; 5=12] �rst. Then welfare is strictly increasing for all p < 7=12; sinceW (p)
is strictly concave and because ofW 0(p) �W 0 (7=12) =

p
3t
�
5
p
3=6� 2

p
3c
�
=32;

which is nonnegative for c � 5=12: Therefore, P � = B maximizes welfare.
Second, consider c 2 (5=12; 1) : In this case, we have limp!0+W

0(p) = t=4 >
0 and W 0 (7=12) < 0. Since W 0(p) is continuous, by the intermediate value
theorem, there exists p1 2 (0; 7=12) such thatW 0(p1) = 0:We can set P̂1 � p1ct:
By strict concavity of W (p); the solution p1 and hence bP1 are unique and the
claim follows.
Part (c): Suppose B and P � B are large, i.e., B;P > 7ct=12: In this case,

it follows from Proposition 4 that x�2 = 1; � = 1=2 and S = 3=2: Moreover,
equilibrium levels of quality and demand are given by (24) and (25), respectively.
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Inserting these into welfare (10), we obtain

W (P ) =
X
i=1;2

(1� c) qidi �
Z d1

0

t

�
1

2
� x
�2
dx�

Z 1

d1

t (x2 � x)2 dx+ s

= (1� c)
��

P

c
� 7

12
t

�
7

12
+

�
P

c
� 5

12
t

�
5

12

�
�t
 Z 7

12

0

�
1

2
� x
�2
dx+

Z 1

7
12

(1� x)2 dx
!
+ s

= (1� c) t
�
P

ct
� 37
72

�
� 19

288
t+ s; (37)

where the last equality follows from Z 7
12

0

�
1

2
� x
�2
dx+

Z 1

7
12

(1� x)2 dx
!
=
19

288
:

Observe that welfare (37) is an (a¢ ne-)linear and increasing function of both the
price P and the transformed price p = P= (ct). Therefore, there exists a uniquebP2 > 7ct=12 such that W ( bP2) = W ( bP1): By the above, welfare is strictly lower
for all P 2 ( bP1; bP2); i.e., W (P ) < W ( bP1): For budgets B 2 (7ct=12; bP2); the
optimal price is P � = bP1: For budgets B > bP2; the optimal price is P � = B: �
Proof of Proposition 7. Let c 2 (5=12; 1) be arbitrary. In parts (i) and
(ii) we determine bP1 and bP2 as functions of the parameters (c; t), respectively.
Subsequently, we show in part (iii) that the range, bP2 (c) � bP1 (c) ; is strictly
increasing in c 2 (5=12; 1). Finally, in parts (iv) and (v), we complete the proof
examining the range in the limit of c! 5=12 and c! 1; respectively.
Part (i): To determine the lower boundary bP1, we maximize (35) within the

range of intermediate transformed prices, ep 2 (1=4; 7=12] : Accordingly, we set
marginal welfare (36) to zero and solve the resulting equation for ep to obtain

ep = 80c2 + 56c+ 11� (20c+ 7)
p
16c2 + 4c+ 1

3 (4c+ 1)
2 =: bp1 (c) :

Observe that limc!(5=12)+ bp1 (c) = 7=12: Consequently, the lower boundary bP1
is given by bP1 (c) = ctbp1 (c) : As we will show next, bp1 (c) is strictly decreasing
in c: It hence follows that bp1 (c) < 7=12 for c > 5=12:
To show that bp1 (c) is strictly decreasing in c, we utilize the implicit charac-

terization of bp1 (c) by the �rst order condition
(1� c)�0 (bp1 (c)) = � 0 (bp1 (c)) ; (38)

where �0( eP ) and � 0( eP ) are given by (31) and (33), respectively. Taking the
derivative of (38) with respect to c, we get

��0 (bp1 (c)) + (1� c)�00 (bp1 (c)) @bp1 (c)
@c

= � 00 (bp1 (c)) @bp1 (c)
@c

: (39)
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We solve (39) for @bp1 (c) = (@c) to obtain
@bp1 (c)
@c

=
�0 (bp1 (c))

(1� c)�00 (bp1 (c))� � 00 (bp1 (c)) ;
which is strictly negative, since the numerator is strictly positive by strict pos-
itive monotonicity of patient bene�t and since the denominator is strictly neg-
ative by strict concavity of welfare for p � 7=12.
Moreover, notice that welfare W , evaluated at bp1 (c) ; is strictly decreas-

ing in c: To see this, consider maximum welfare as a function of c; i.e., W =
W (bp1 (c) ; c): Applying the envelope theorem, we obtain that

@W (bp1 (c) ; c)
@c

=
@W (ep; c)
@ep

����ep=bp1(c)| {z }
=0

@bp1 (c)
@c

+
@W (ep; c)
@c

����ep=bp1(c)
= �� (bp1 (c)) < 0; (40)

where the last equality follows from di¤erentiating (27) with respect to c:
Part (ii): We continue with determining the upper boundary bP2 > 7ct=12:

For prices P > 7ct=12, we can also rewrite (37) as a function of the transformed
price p = P= (ct):

W (p) = t

�
(1� c) p+ 37

72
c� 167

288

�
+ s:

The upper boundary bP2 and its transformed value bp2 = bP2= (ct) are then im-
plicitly characterized by

t

�
(1� c) bp2 + 37

72
c� 167

288

�
+ s =W (bp1 (c)) ;

where the right-hand side represents welfare, evaluated at the lower transformed
boundary bp1 (c). Solving this equation for bp2; we obtain

bp2 (c) = (167� 148c) t+ 288 (W (bp1 (c))� s)
t (1� c) 288 (41)

for the transformed value. We show that bp02 (c) > 0: To this end, we di¤erentiate
(41) with respect to c to obtain

@bp2 (c)
@c

=

�
�148t+ 288@W (bp1(c);c)

@c

�
(1� c)

288t (1� c)2

+
(167� 148c) t+ 288 (W (bp1 (c))� s)

288t (1� c)2
(42)

=
19t+ 288 (W (bp1 (c))� s� (1� c)�(bp1 (c)))

288t (1� c)2
; (43)
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where, in the last row, we have inserted marginal welfare (40). The numerator
of (43) is strictly positive, since it follows from (27) that

W (bp1 (c))� s� (1� c)� (bp1 (c)) = �� (bp1 (c))
and since (34) implies

�� (bp1 (c)) � �� � 7
12

�
= � 19

288
t:

Moreover, the inequality holds strictly because c > 5=12 implies bp1 (c) < 7=12
and since � (�) is strictly convex. Thus, bp2 (c) is strictly increasing in c. It
immediately follows that the upper boundary, which is given by

bP2 (c) = ctbp2 (c) = c (167� 148c) t+ 288 (W (bp1 (c))� s)
288 (1� c) ; (44)

is strictly increasing as well.
Part (iii): To examine the range, bP2 (c)� bP1 (c) ; observe thatbP2 (c)� bP1 (c) = (bp2 (c)� bp1 (c)) ct: (45)

It hence follows that

@

@c

� bP2 (c)� bP1 (c)� = ct @
@c
(bp2 (c)� bp1 (c))| {z }

>0

+ (bp2 (c)� bp1 (c))| {z }
�0

t > 0: (46)

The �rst term of (46) is strictly positive since bp1 (c) is strictly increasing andbp2 (c) is strictly decreasing in c. The second term of (46) is non-negative because
of (45) and since, by construction of bp2 (c) and bp1 (c) ; we have bp2 (c) � bp1 (c).
It thus follows that the gap bP2 (c)� bP1 (c) is strictly increasing in c.
Part (iv): We have already seen that limc!(5=12)+ bp1 (c) = 7=12 in part (i).

Therefore, showing that limc!(5=12)+ bp2 (c) = 7=12 proves our claim. Notice �rst
that, since welfare (27) is continuous with respect to c and eP , as c! (5=12)

+
;

welfare converges to

lim
c!(5=12)+

(W (bp1 (c))� s)
= lim

c!(5=12)+
((1� c)� (bp1 (c))� � (bp1 (c)))

= � 11

432
t; (47)

where the last equality follows from

lim
c!(5=12)+

� (bp1 (c)) = limeP!(7=12)�
�
� eP� = 5

72
t and

lim
c!(5=12)+

� (bp1 (c)) = limeP!(7=12)�
�
� eP� = 19

288
t:
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Setting (37) equal to (47) and solving it for bp2 (c) � P= (ct) ; we obtain bp2 (c) =
(444c� 479) = (864c� 864) ; which implies

lim
c!(5=12)+

bp2 (c) = 7

12
:

Part (v): To examine the limit c! 1�; we solve

(1� c) t
�bp2 � 37

72

�
� 19

288
t+ s =W (bp1 (c))

for bp2 to obtain
bp2 (c) =

19
288 t+

37
72 t (1� c) +W (bp1 (c))� s

t (1� c)

=
37

72
+

19
288 t+W (bp1 (c))� s

t (1� c) : (48)

Because of

lim
c!1�

bp1 (c) =
49� 9

p
21

25
and

lim
c!1�

W (bp1 (c)) =
14
p
21� 79
300

+ s

the numerator of the third term in (48) converges to 19
288 t+

�
14
p
21� 79

�
t=300 >

0 as c! 1�. It thus follows that limc!1�
bP2 (c) = limc!1� tcbp2 (c) =1: �

Proof of the Theorem. Let c 2 (0; 1) ; t > 0 and P > 0 be given ar-
bitrarily. Consider W d (P ) �Wm � ��2 (P ) ; where Wm is given by (9), while
��2 (P ) and W

d (P ) depend on the price range and are given by (22) and (35)
for P 2 (0; 7ct=12] and by (26) and (37) for P > 7ct=12, respectively. Set
p :� P= (ct) > 0 and de�ne the corresponding transformation


 (p; c; t) = !d (p; c; t)� !m (t)� �d2 (p; c; t)
= !d (p; c; t)� �d2 (p; c; t) + s� t=12; (49)

where we have inserted !m (t) = s�t=12, while !d (p; c; t) and �d2 (p; c; t) depend
on the price range and will be speci�ed further below. According to De�nition 3,
entry always raises welfare at price P if 
 (p; c; t) � 0 for p = P= (ct) : We
therefore start our analysis with characterizing the solutions p1 2 (0; 7=12) and
p2 > 7=12 to 
 (p; c; t) = 0: Subsequently, we establish parts (a) to (c) of the
theorem.

Case 1: Consider p 2 (0; 7=12]. In this case, it follows from (35) and (22)
that

!d (p; c; t) =
t
�
(p (1 + 4c) + 12 (1 + 2c))

p
12p+ 9� (21 + 60c) p� 72c� 38

�
24

+s
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and �d2 (p; c; t) = ct

�p
9 + 12p� 3� 7

4
p+

1

12
p
p
9 + 12p

�
;

respectively. Inserting !d (p; c; t) and �d2 (p; c; t) in (49), we obtain


 (p; c; t) = �
t
�
21p� 12

p
3
p
4p+ 3 + 18cp�

p
3p
p
4p+ 3� 2

p
3cp
p
4p+ 3 + 36

�
24

:

Lemma 2 below collects useful properties of 
 (p; c; t). Subsequently, Lemma 3
characterizes the existence of solutions p 2 (0; 7=12) to 
 (p; c; t) = 0.

Lemma 2 (i) Boundaries:

lim
p!0+


 (p; c; t) = 0 (50)




�
7

12
; c; t

�
= (5� 14c) 5t

288
(51)

(ii) Partial derivative w.r.t. p:

@
 (p; c; t)

@p
=
t
�
9
p
3� 7

p
4p+ 3� 6c

p
4p+ 3 + 2

p
3c+ 2

p
3p+ 4

p
3cp
�

8
p
4p+ 3

(52)

lim
p!0+

@
 (p; c; t)

@p
=
t

4
(1� 2c) (53)�

@
 (p; c; t)

@p

�
p=7=12

=
t

64
(5� 22c) (54)

(iii) 
 (�; c; t) is strictly concave on (0; 7=12] for c � 1=2:
(iv) Strict monotonicity w.r.t. c:

c0 < c00 =) 
 (p; c0; t) > 
 (p; c00; t)

Proof of Lemma 2. We con�ne ourselves with proving parts (iii) and (iv),
since parts (i) and (ii) are immediate.
Ad (iii): Di¤erentiating (52) with respect to p; we get

@2

@p2

 (p; c; t) =

p
3t (2c+ p+ 2cp� 3)

2 (4p+ 3)
3
2

�
"p

3t (2c+ p+ 2cp� 3)
2 (4p+ 3)

3
2

#
c=1=2

=

p
3t (p� 1)
(4p+ 3)

3
2

;

where the inequality follows from c � 1=2: Notice that the right hand side is
strictly negative for p � 7=12:
Ad (iv): Fix c0; c00 2 (0; 1) such that c0 < c00. First, it follows from (27) that

!d (p; c0; t) > !d (p; c00; t) : Monotonicity is strict because of � (p) > 0 by (28)
and since the equilibrium is of type III by Propositions 2 and 4. Second, we
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obtain from (22) that �d2 (p; c
0; t) < �d2 (p; c

00; t) : Combining the two inequalities,
we get


 (p; c0; t) = !d (p; c0; t)� !m (t)� �d2 (p; c0; t)
> !d (p; c00; t)� !m (t)� �d2 (p; c00; t) = 
 (p; c00; t) ;

which proves the claim.

Lemma 3 Let c 2 (0; 1) and t > 0: Then we have:
(i) A solution p1 2 (0; 7=12) to 
 (p1; c; t) = 0 exists if and only if




�
7

12
; c; t

�
< 0 (55)

and

lim
p!0+

@

@p

 (p; c; t) > 0 (56)

(ii) The solution p1 2 (0; 7=12) to 
 (p1; c; t) = 0 is unique whenever it exists.

Proof of Lemma 3. Fix t > 0: Part (i): If conditions (55) and (56) are
saties�ed, existence follows from the intermediate value theorem, since 
 (p; c; t)
is continuous in p by Proposition 5 and because of (50).
To show necessity of the two conditions, suppose one of the two conditions

is not satis�ed. First, if 
 (7=12; c; t) � 0; then (51) implies c � 5=14: We show
that 
 (p; c; t) > 0 for all p 2 (0; 7=12) ; which contradicts the existence of a
root p1 2 (0; 7=12). Observe that c < 5=14 implies 
 (p; c; t) > 
 (p; 5=14; t) by
negative monotonicity of 
 (p; c; t) in c: It is therefore su¢ cient to establish that

 (p; c; t) > 0 for c = 5=14 and for all p 2 (0; 7=12) :
De�ne

e
 (p) := 

�
p; 514 ; t

�
t

=
1

2

p
3
p
4p+ 3� 8

7
p+

1

14

p
3p
p
4p+ 3� 3

2
:

We show that e
 (p) is strictly concave in p for p < 7=12. To see this, we calculate
the �rst and second derivative,

e
0 (p) =
1

14
p
4p+ 3

�
6
p
3p� 16

p
4p+ 3 + 17

p
3
�

and

e
00 (p) =
2

7

p
3
3p� 4
(4p+ 3)

3
2

;

respectively. Clearly, we have e
00 (p) < 0 for all p < 7=12: Moreover, notice thate
 (0) = e
 (7=12) = 0: Strict concavity of e
 (�) hence implies 
 (p; 5=14; t) > 0 for
all p 2 (0; 7=12) :
Second, if limp!0+ (@
 (p; c; t) =@p) � 0; then c � 1=2 by (53) and the strict

concavity of 
 (p; c; t) in p 2 (0; 7=12] implies @
 (p; c; t) =@p < 0 for all p 2
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(0; 7=12]. It hence follows from (50) that 
 (p; c; t) < 0 for all p 2 (0; 7=12] ;
which contradicts the existence of a solution p1 2 (0; 7=12) to 
 (p1; c; t) = 0.
Part (ii): Suppose two solutions p0; p00 2 (0; 7=12) exist, that is, 
 (p0; c; t) =


 (p00; c; t) = 0. W.l.o.g., let p0 < p00. Hence, by Lemma 3, the conditions (51)
and (53) both hold true, which, by Lemma 2, implies that c 2 (5=14; 1=2) :
By Lemma 2(iii), 
 (p; c; t) is strictly concave in p 2 (0; 7=12] : Consider the
extension of 
 (�; c; t) de�ned by


 (p; c; t) :=

�
0 p = 0

 (p; c; t) p > 0

: (57)

By Lemma 2(i) and by continuity of 
 (�; c; t) on (0; 7=12], the extension 
 (�; c; t)
is continuous on [0; 7=12] : Moreover, it inherits the strict concavity of 
 (�; c; t).
Set p = 0 and choose � 2 (0; 1) such that p0 = �p + (1� �) p00: We have
p < p0 < p00: Then strict concavity implies


 (p0; c; t) > �
 (p; c; t) + (1� �) 
 (p00; c; t) :

By assumption we have 
 (p0; c; t) = 
 (p00; c; t) = 0 and from (57), it follows
that 
 (p; c; t) = 0: Consequently, both the left and the right hand side are zero,
which yields a contradiction. Thus, a solution p1 2 (0; 7=12) to 
 (p1; c; t) = 0
must be unique in (0; 7=12].

Case 2: Now consider p > 7=12: In this case, we deploy �d2 (p; c; t) = 25ct=144
from (26) and

!d (p; c; t) = (1� c) t
�
p� 37

72

�
� 19

288
t+ s

from (37) and insert these expressions in (49) to obtain


 (p; c; t) = !d (p; c; t)� !m (t)� �d2 (p; c; t)

= (1� c) t
�
p� 37

72

�
� 19

288
t+ s�

�
s� t

12

�
� 25

144
ct

=
t

288
(98c� 143 + 288p� 288cp)

=
5t

288
(5� 14c) + t

12
(12p� 7) (1� c) : (58)

Observe that 
 (p; c; t) is linear and strictly increasing in p. Moreover, we have

lim
p! 7

12


 (p; c; t) =
5t

288
(5� 14c) ;

which is nonnegative if and only if c � 5=14: This establishes Lemma 4 below.

Lemma 4 A solution p2 > 7=12 to 
 (p2; c; t) = 0 exists if and only if c > 5=14:
Moreover, this solution is unique and it is given by

p2 =
7

12
+

5

288

14c� 5
1� c :
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We are now in the position to establish parts (a) to (c) of the Theorem.
Part (a): Fix c � 5=14: First, by Lemma 4 there does not exist any solution

p > 7=12 to 
 (p; c; t) = 0: In addition, it follows from (58) that 
 (p; c; t) > 0 for
all p > 7=12: Second, because of c � 5=14 it follows from (51) that 
 (7=12; c; t) �
0: By Lemma 3 hence no solution p 2 (0; 7=12) exists to 
 (p; c; t) = 0: More-
over, (50) and (53) imply that 
 (p; c; t) > 0 for all p 2 (0; 7=12) and hence

 (7=12; c; t) � 0; by continuity of 
 (p; c; t) in p 2 (0; 7=12] : We have thus
shown that 
 (p; c; t) � 0 for all p > 0, that is, entry always raises welfare at
any price P = pct > 0 if c � 5=14:
Part (b): Fix c 2 (5=14; 1=2). First, it follows from (51) and (53) that

the su¢ cient conditions in Lemma 3 are satis�ed. Consequently, there exists a
unique solution p1 2 (0; 7=12) to 
 (p1; c; t) = 0: We set �P1 := p1ct: Moreover,
it follows from (53) that limp!0+ (@
 (p; c; t) = (@p)) > 0; which, by continuity
of 
 (�; c; t), implies 
 (p; c; t) > 0 for all p 2 (0; p1). Furthermore, c > 5=14
implies 
 (7=12; c; t) < 0 by (51), which, again by continuity of 
 (�; c; t), entails

 (p; c; t) < 0 for all p 2 (p1; 7=12) : Second, by Proposition 4 there exists a
unique solution p2 > 7=12 to 
 (p2; c; t) = 0: We set �P2 := p2ct: It thus follows
from (58) that 
 (p; c; t) > 0 for all p > p2: Third, 
 (7=12; c; t) < 0 and the
continuity of 
 (p; c; t) in p imply that 
 (p; c; t) < 0 for all p 2 (p1; p2) ; since by
Lemmas 3 and 4 the solutions p1 2 (0; 7=12) and p2 2 (7=12;1) are unique in
their respective ranges. We have thus shown that entry always raises welfare at
any price P = pct 2

�
0; �P1

�
[
�
�P2;1

�
; while it does not for prices P 2

�
�P1; �P2

�
:

Part (c): Fix c � 1=2: By (53), we have limp!0+ (@
 (p; c; t) = (@p)) � 0
and hence, by Lemma 3, no solution p1 2 (0; 7=12] to 
 (p1; c; t) = 0 exists,
i.e. 
 (p; c; t) 6= 0 for all p 2 (0; 7=12]. Moreover, it follows from (51) that

 (7=12; c; t) < 0; and hence, by continuity of 
 (�; c; t) ; that 
 (p; c; t) < 0 for
all p 2 (0; 7=12] : Moreover, it follows from Lemma 4 that there exists a unique
solution p2 > 7=12 to 
 (p2; c; t) = 0 and, from (58), it follows that 
 (p; c; t) > 0
for all p > p2; while 
 (p; c; t) < 0 for p 2 (7=12; p2) :
Setting �P2 := p2ct; we have thus shown that entry raises welfare at any price

P = pct 2
�
�P2;1

�
; while it does not for prices P 2

�
0; �P2

�
: �
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Figure 1(a): Quality equilibrium of type I

41



Figure 1(b): Quality equilibrium of type II
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Figure 1(c): Quality equilibrium of type III
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Figure 2(a): Location choice for a low price

Figure 2(b): Location choice for an intermediate price

Figure 2(c): Location choice for a large price
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Figure 3: Welfare as a function of the price for c > 5=12
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