
WORKING PAPERS IN ECONOMICS 
 

 
Department of Economics 

U N I V E R S I T Y  OF  B E R G EN 
 

 

 

 

No. 01/20 
 
 
THOMAS DE HAAN 
 
 
ELICITING BELIEF DISTRIBUTIONS 
USING A RANDOM TWO-LEVEL 
PARTITIONING OF THE  STATE  
SPACE  
 
 
 
 



Eliciting belief distributions using a random two-level

partitioning of the state space

Thomas de Haan∗

6th January 2020

Abstract

I introduce a new method to incentivise the elicitation of belief distributions, the Random

Partitions method. With this method, an agent’s payoff not only depends on the realised

state and the elicited distribution, but also on a randomised two-level partitioning of the

state-space. The method creates a binary lottery payoff structure where reports closer to

an agent’s true belief distribution generate a higher probability to earn a high payout. The

randomisation of the state-space partitioning ensures that the agent is incentivised to report

correctly across the entire belief distribution. I compare the introduced Random Partitions

method with both the well known Quadratic Scoring Rule, and a method based on the

Becker-DeGroot-Marschak procedure and argue that the Random Partitions method gives

substantially stronger truth-telling incentives to agents in situations where there are many

states/bins.

Keywords: Belief elicitation, randomized state/event space partitioning, proper scoring

rules.
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1 Introduction

Eliciting the beliefs of an expert to better map uncertainty regarding a future event can be a

valuable aid to making economic decisions. One could think of the distribution of the oil price at a

future date, predictions of the future size of an industry or next year’s inflation level in a country.

To ensure that an agent reports his/her true beliefs, economists have developed several incentivised

mechanisms to elicit beliefs and expectations (see e.g. Schlag et al. 2015 for a literature review).

This includes a number of methods to elicit means, variances or most likely intervals (Schlag &

van der Weele 2015) of a distribution.

When it comes to incentivised methods to elicit an agent’s complete belief distribution, most

methods are based on Proper Scoring Rules (Savage 1971) with as primary application the Quadratic

Scoring Rule (Brier 1950 and e.g. Selten 1998) (QSR). Proper scoring rules can be used to elicit en-

tire continuous belief distributions, but also allow for a (more practical) application where the state

space is separated in a number of intervals, or “bins” (Matheson and Winkler 1976 and e.g. Har-

rison et al. 2017). One known alternative elicitation method is described by Karni (2009) which

uses a randomisation mechanism similar to the Becker-DeGroot-Marschak (Becker et al. 1964)

procedure to elicit a probability belief for one possible event, which could be used to separately

elicit the likelihood of every possible event of an entire distribution.

Although proper scoring rules to elicit complete subjective belief distributions exist in the

economics literature, their application to incentivise forcasters for their predictions appears to be

rare in practice.1 Among a number of reasons (see e.g. Armantier and Treich 2013), one critical

disadvantage, I will identify and prove, plaguing the most used discrete scoring rule, the QSR, is

that it’s incentives strength decreases as the number of states over which a distribution is elicted

gets larger. Eliciting a forcaster’s belief distribution for a future inflation rate or commodity

price will likely entail a state space divided into many ’bins’, and a mechanism such as the QSR

performs particularly poor in such an enviroment when it comes to providing sharp incentives (see

also Harrison 1989 for an illustration on the importance of incentive sharpness in an experimental

economics setting). The availability of an elictation method that can provide incentives at a level
1Harrison and Phillips (2014) report one example using the discrete version of the quadratic scoring rule with

chief risk officers
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which is robust to changing the fineness of the state-space “grid” could be a step forward to making

proper elicitation methods a viable method to incentivize forcasters.

In this paper I will introduce a new method, the “Random Partitions” method, to incentivise

the elicitation of a belief distribution. In the mechanism, the agent will either receive a payoff of

zero or receive a fixed prize Y and her elicited response will (in part) determine the probability

that the agent receives the payoff Y . This implies that the method falls in the class of “binary

lottery procedures” which have the property that an agent’s attitude towards risk will not influence

the optimality of reporting her true beliefs. The probability that an agent will receive a payoff

will depend on the elicited distribution and the realised state, but also on a random two-level

partitioning of the state space. The principal will, before asking the agent for her beliefs, specify

a procedure to draw a random two-level partitioning of the state space, which should be drawn

independently of the elicited distribution. After the agent reports her beliefs, the principal (or

an independent third party) draws and makes public a ’two-level partioning’ of the state space.

When the actual realisation of the state is publicly revealed, it will fall in one of the subsets of the

partition of the state space. Conditional on the state belonging to one of the subsets of the first

level of the partition, the elicited belief distribution makes a prediction which subset of the second

level of the partition the true state most likely belongs to. If the realised state indeed falls in the

subset the elicited distribution gives the most weight here, then the agent receives the reward Y

and otherwise not.

The idea behind the Random Partitions method is that it poses a very large (possibly infinite)

number of potential questions to the agent about which events she thinks have a higher likelihood

to occur than others. Given that via the random partitioning and the uncertainty of the true state,

the type of question the elicited belief distribution will have to answer is unknown, the Random

Partitions method simultaneously poses many potential tests to the elicited belief distribution,

ensuring that the agent is incentivised to report truthfully across the entire belief distribution.2

This paper will show for the Random partitions method that reporting one’s true belief distri-

bution is a best response for the agent and will specify under what conditions reporting a deviating
2In a recent paper, Chambers and Lambert (2019) appeal to a similar intuition to construct an incentive com-

patible mechanism for eliciting expected changes in beliefs in a dynamic setting. They attribute the origin of this
mechanism idea, used first in the context of eliciting preferences over many possible choices, to Allais (1953).
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distribution is not a best response. Next the paper will identify the partition-drawing procedures

for which this procedure implements an agent’s true beliefs distribution as a unique best response

for continuous belief distributions on an interval. Finally for the case of eliciting the beliefs over

an interval with a finite (but possibly large) number of bins, the paper reports simulations that

demonstrate the sensitivity of the expected payoff for this elicitation method the agent misreport-

ing her belief distribution. These simulations allow to compare the introduced Random Partitions

method to a normalized version of the QSR and a normalized version of the BDM/Karni elici-

tation procedure. The results show that the strength of the ’truthfully reporting’ incentives of

the Random Partitions method remains robust, while for the Quadratic Scoring Rule and the

Becker-DeGroot-Marschak-based procedure, the payoff consequences for misreporting decrease as

the number of relevant states or bins increases.

Section 2 describes the Random Partitions procedure and gives a simple 3-state numerical

example, section 3 states and proves the main theoretical results, section 4 reports the results of

the simulation exercise and section 5 concludes.

2 Defining the Random Partitions elicitation procedure

Assume an agent with any preferences such that she prefers a lottery (Y, p; 0, 1− p) with Y > 0 to

a lottery (Y, q; 0, 1− q) if p > q, and that satisfy expected utility. Furthermore assume that this

agent holds a belief distribution F over a state space S. Let ΩS be the set of all possible finite

two-level partitions of state space S where a finite two-level partition is a partition {e1, e2,, .., en}

of S into a finite number n of subsets (or ’events’) ei, with for each event ei another partitioning

{ei1, ei2,, .., eimi
} of ei into a finite number mi of events eij. Let Γ be a probability distribution

over ΩS.

The random partitions elicitation proceeds as follows:

1. The principal announces the payoff randomisation procedure, which will imply a distribution

Γ over ΩS.

2. The agent reports a belief distribution G over the state space S.
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3. The principal randomly draws, using the announced distribution Γ, a finite two-level parti-

tioning of S.

4. The value of the true state s∗ ∈ S is realised.

5. The true state s∗ will lie in one of the events, say ei, of the drawn partition of S. Furthermore

s∗ will lie in one of the subsets eij of the partition of ei. The elicited distribution G assigns a

highest probability to one of the subsets of ei, call this subset eiG. If s∗ ∈ eiG then the agent

receives an amount Y > 0 and otherwise the agent earns 0.

2.1 A three-state example

To give an intuition how this elicitation mechanism works I will now present a simple numerical

example of eliciting the belief from an agent over a set of three states. The example is to illuminate

that submitting one’s true belief distribution is a best response, that truthful reporting is not

neccesarily a unique best reponse, especially in a three state setting, and why the two-level partition

feature of the mechanism can help generate stronger truth reporting incentives, as compared to

rewards based on a one-level partition variant.

Assume a state space S containing three states S = {a, b, c}. Also assume an agent who holds

the following beliefs F over S: F (a) = 0.45, F (b) = 0.3, F (c) = 0.25.

To illustrate how a two-level random partitioning of S can be constructed, Let P1 ({e1, e2..., en}})

with e1∪e2, ..,∪en = S be the probability under Γ that the first level partition becomes{e1, e2..., en}.

Also let P2({ei1, ei2..., eim}}) with ei1 ∪ ei2, ..,∪eim = ei be the probability under Γ that, given a

first partition draw containing ei as a subset, the second level partition becomes {ei1, ei2..., eim}(for

ease I only specify the probabilities and partitions that have a strictly positive probability under

Γ).

One possible set of partition drawing probabilities is described in table 1 and will be used as

an example:
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Table 1: Example of two-level partitioning procedure of S = {a, b, c}
P1 ({{a, b, c}}) = 0.4 P2 ({{a, b}, {c}}) = 0.2 P2 ({{a}, {b}}) = 1
P1 ({{a, b}, {c}}) = 0.2 P2 ({{a, c}, {b}}) = 0.2 P2 ({{a}, {c}}) = 1
P1 ({{a, c}, {b}}) = 0.2 P2 ({{b, c}, {a}}) = 0.2 P2 ({{b}, {c}}) = 1
P1 ({{b, c}, {a}}) = 0.2 P2 ({{a}, {b}, {c}}) = 0.4

Given this true belief distribution F and this specific distribution Γ of drawing the double par-

tition we can calculate the difference in expected payoffs for the agent if she reports a distribution

G with G (a) = 0.56, G (b) = 0.2, G (c) = 0.24 as opposed to reporting her true beliefs F . We

can immediately see how reporting such a different distribution could lead to a different payoff

outcome. Say for example the first level partition that is drawn is{{a, b, c}}, and the second level

partition draw is{{b, c}, {a}}. Under distribution F the event set{b, c} is more likely than event

a, but reporting distribution G would lead to event a being considered more likely than the union

of events b and c, and so reporting G would mean betting on event a in the case of this double

partition draw.

Now we can calculate, given the double partition distribution Γ as specified in table 1 and true

beliefs F , that the probability for the agent to receive prize Y when reporting F is 67.2 and when

reporting G is 61% (calculations are in Appendix B). Note that, using this procedure, any reported

belief with G (a) > G (b) > G (c) and G ({b, c})>G (a) would yield the same payoff as reporting

F , therefore clearly given such a coarse state space the random partition method does not provide

incentives that make reporting truthfully a unique best response. We will see in proposition 3

however that for elicitations over a continuous interval the method does provide strict truthtelling

incentives and the simulations in section 4 will show that for spaces with a higher number of states

the random partitions method provides strong and near-strict truthtelling incentives.

A potential question one could have when seeing the definition of the random partitions method

is “why use a two-level partition and not just a single level partitioning of S?”. The advantage

of a two level partitioning of the state space is that it allows one to ask the question “which of

these subsets (or intervals) does the agent’s submitted distribution regard as more likely” at a local

level in the distribution. In the example state c is wrongly considered more likely than state b by

distribution G, however as G (a) > G ({b, c}) there will not be any single partition of S where the
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relative likelihood of state b compared to state c can be tested. Using the same notation as before,

but setting P1 ({{a, b, c}}) = 1, we can calculate the different expected payoffs of reporting either

F or G for a single level partition example. The partition probabilities for this example are shown

in table 2.

Table 2: Implementing a single level partition of S = {a, b, c}
P1 ({{a, b, c}}) = 1 P2 ({{a, b}, {c}}) = 0.2

P2 ({{a, c}, {b}}) = 0.2
P2 ({{b, c}, {a}}) = 0.2
P2 ({{a}, {b}, {c}}) = 0.4

We now get that the expected probability of earning a prize Y is 58%when reporting F and

56% when reporting G (again, see for calculations Appendix B). Looking at the relative intensity

of the incentives of the two examples, reporting F instead of G would constitute a 10.2% increase

in the expected payoff for the double partition setup versus a 3.6% increase in the single level

partition setup. This example shows that the ability of the double partition procedure to put the

likelihoods implied by a submitted distribution locally to the test can increase the overall strength

of the incentives to encourage truthful reporting.

3 Theoretical results

3.1 General results

The following two propositions describe that reporting her true belief distribution is a best response

for the agent and specify the conditions under which reporting a different distribution than the

true belief is not a best response.

Proposition 1 : It is a best response for the agent to report her true belief distribution F.

Proof : For each subset ei of any drawn partition of S, the agent would maximize the probability

to win the prize Y , conditional on ei to contain the realisation s∗, by selecting as paying-out sub-

subset eiG the one she beliefs to have the highest probability of being realized given that s∗ ∈ ei.

As the partitions and sub-partitions are drawn independently of the reported distribution G the

sub-subset eij with the highest probability conditional on s∗ ∈ ei is simply the sub-subset eij of ei
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with the highest probability according to the agent’s beliefs F . Therefore reporting G = F would

select the winning-probability maximizing subset eij for each possible partition and sub-partition

draw and is therefore a best response of the agent for this elicitation procedure.�

This procedure does not in general guarantee that for the agent, reporting her true beliefs

distribution is the unique best response. However we can show to what extent the procedure is

incentive compatible by identifying what types of belief responses G would not be a best response.

Let ζ be a subset of ΩS and define eiG = argmaxeij∈ei
G (eij) and eiF = argmaxeij∈ei

F (eij).

Proposition 2 : A reported belief distribution G is not a best response if there exists a ζ ∈ ΩS

with Γ (ζ) > 0 where for each element in ζ there exists a subset ei and sub-partition {ei1, ei,2, .., ei,mi
}

with F (ei) > 0 and F (eiF ) > F (eiG).

Proof : The agent can improve her expected payoff, according to her own beliefs F , by reporting

F instead of G. We know for each possible pair of ei ∈ S and partition {ei1, ei,2, .., ei,mi
} of ei,

reporting F maximizes the probability of receiving reward Y given that s∗ ∈ ei. So reporting F

instead of G does not lower the expected chance of winning Y conditional for any double partition

draw. However there is a positive probability that a double partition is drawn for which reporting

F leads to a different subset selection eiF compared to reporting G, leading to a nonzero increase,

conditional on this double partition being drawn, of the probability under beliefs F that the agent

will earn Y after reporting F instead of G as F (eiF ) > F (eiG).�

Proposition 2 shows how this procedure limits the type of distributions an agent could optimally

enter in step 2 of the elicitation procedure. Essentially if there are double partition draws for which

entering a deviating distribution would mean ’betting’ on a less likely event eij compared to entering

one’s true distribution, then the agent would regret such a distribution choice after step 3 in the

procedure and such a distribution would not be a best response to the elicitation. Because of this,

any best response belief distribution must be very similar to the agent’s true beliefs as soon as

there are a substantial number of states to randomize over that are have positive probabilities of

occuring according to the agent’s true belief distribution.

The fact that the double partition draw is random means that to be a best response, an elicited
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distribution should be optimal for every possible ’dilemma’ the entered beliefs distribution might

have to answer once the partitions are drawn. The following subsection demonstrates a specific

setting where the procedure elicits the agent’s true beliefs as a unique best response.

3.2 Result for eliciting a continuous belief distribution over a finite

interval

Now I will show how an implementation of the randomization procedure Γ for generating double

partitions of the state space S will elicit an agent’s true beliefs as a unique best response if the

agent holds and can report a continuous belief distribution over an interval.

Assume the state space S is a closed interval [xmin, xmax] on the real line and the agent holds a

continuous belief distribution F over this interval. Furthermore, define Γ to be a subinterval-robust

distribution over ΩS if there exists an ε > 0 such that for every possible set of {zi, zo, zp, zq, zr}

with xmin ≤ zi < zo < zp < zq < zr ≤ xmax the distribution Γ assigns a positive probability

to the set of finite double partitions containing an interval [xi, xj] with zi − ε ≤ xi ≤ zi + ε and

zj−ε ≤ xj ≤ zj +ε as a subset ei of S and [xo, xp] and [xq, xr] with zo−ε ≤ xo ≤ zo, zp−ε ≤ xp ≤ zp,

zq − ε ≤ xq ≤ zq and zr − ε ≤ xr ≤ zr as subsets ep and eq of ei.3

Proposition 3 : It is a unique best response for the agent to report her true continuous belief

distribution F over the interval [xmin, xmax] if the elicitation procedure uses a distribution Γ that

is subinterval-robust.

Proof : Given that F and G are continuous belief distributions over an interval [xmin, xmax], if

there is a value x∗with f (x∗) 6= g (x∗) then there must exist an set of ε, zi, zo, zp, zq, zr with ε > 0

so that, for all sets ei equal to [xi, xj] with zi− ε ≤ xi ≤ zi + ε and zj − ε ≤ xj ≤ zj + ε containing

subsets eio = [xo, xp] and eio = [xq, xr] with zo− ε ≤ xo ≤ zo,zp− ε ≤ xp ≤ zp, zq − ε ≤ xq ≤ zq, we

have argmaxeij∈ei
G (eij) = eio and argmaxeij∈ei

F (eij) = eir with F (eir) > F (eio). If Γ assigns

a positive probability to the set of finite double partitions containing an interval [xi, xj] and sub-
3Note that a random partition draw here still contains only a finite number of intervals, even if the state space

is continuous. One drawing procedure that would implement a distribution Γ with these properties is one where
the first level partition creates 3 intervals, with each cut generated by a uniform random draw, and 5 intervals
created at the second level partition, again with each cutoff uniformly drawn within the specific level one partition
subinterval. Many alternative procedures would also satisfy the requirements of proposition 3.
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intervals[xo, xp] and [xq, xr] from the described set, then from proposition 2 it follows that any

belief distribution G with f (x∗) 6= g (x∗) for some value x∗is not a best response and so reporting

the true belief distribution F is the unique best response.�

4 Comparison of the Random Partitions elicitation method

with other belief elicitation methods

In this section compares the incentive strength of the proposed Random Partitions mechanism

with two other methods, the Quadratic Scoring Rule, and the Becker DeGroot Marchak-based

procedure as described by Karni (2009). First, I will state a proposition for the Quadratic Scoring

Rule showing that the strength of incentives tends to zero as the grid gets finer. Second, I will

show the results of a simulation excercise showing the payoff consequences of misreporting ones

true beliefs for the three elicitation methods. What the simulations will show is that even for

discrete distributions with a finite number of states (where the Random Partitions method does not

formally implement the true belief distribution as a unique best response) the Random Partitions

method still provides clear incentives to report a distribution very close to one’s true beliefs. Even

more, we will see that if our state space contains a large number of bins, then even in this discrete

setting the incentives provided by the Random Partitions elicitation mechanism will be stronger

than those of a normalized version of the Quadratic scoring rule and the Karni method.4

Both the quadratic scoring rule and the Karni method allow for normalization of the potential

payoffs between 0 and 1.5 This has the advantage, as explained in Schlag et al. (2015) (see also

Roth and Malouf 1979, McKelvey 1990, Sandroni, A. & Shmaya 2013, Hossain and Okui 2013,

and Harrison et al. (2013 and 2014)), that it allows the normalized score to be translated into a

lottery probability to win a fixed price Y . This would make the elicitation method independent of
4Stronger incentives here means that given a certain true belief distribution F , how much do the expected payoffs

for the agent decrease if she reports a different distribution G. Another interpretation of stronger incentives could
be to what extent will the expected payout for an agent increase if she is able to reduce the entropy level of her
true beliefs distribution.

5Assuming here again that the agent’s preferences over lotteries satisfy the independence axiom. See for example
Schlag & Van der Weele (2015) or Sandroni, A. & Shmaya (2013).
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an agent’s risk attitudes (an issue addressed by Winkler and Murphy, 1970).6 Here it also allows

for an easy direct comparison between the different elicitation mechanisms.

4.1 Decreasing payoff sensitivity for the Quadratic Scoring Rule

The following proposition establishes that the strength of the incentives for the discrete Quadratic

Scoring Rule decrease asymptotically as the grid used for the elicitation gets finer.

Proposition 4 : Assume an agent holds a continuous belief distribution F over the interval

[xmin, xmax] with lenght l, which is divided into an equally spaced grid of n intervals. As n increases,

the difference in expected Quadratic Scoring Rule payoff of reporting an agent’s truthfull belief

probability vector and reporting an arbitrary different probability vector will asymptotically converge

to 0.

The proof of this proposition is described in Appendix C.

4.2 Description of the simulation procedure

For the simulation exercise we assume that the state space is the interval [0, 200] and that the

agent holds a belief distribution equal to the truncated normal distribution with mean 100 and

standard deviation 15. The simulation runs 100000 iterations of the elicitation procedure for each

method. An iteration consists of drawing a realization from the actual belief distribution that

the agent holds, and an application of each of the considered elicitation methods (which possibly

entails further random draws to construct a partitioning of the interval). Throughout, the state

space will be divided up in a number of equally sized bins. The simulations will be performed for

different bin-width sizes, namely bins with width 10, 1 and 0.1.

4.2.1 Procedure for the Random Partitions method

The application of the proposed procedure here generates a double partition in the following way.

The two level partition for the simulation was generated by drawing n uniformly random numbers,
6But note that Harrison et al. 2017 show the correction needed when eliciting beliefs using a QSR on risk-averse

agents is limited when eliciting entire distributions. Next to this there have been other ways proposed to correct
proper scoring rules for risk attitudes and probability weighting, see e.g. Offerman et al 2009.
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sorted to form {x1, x2..., xn+2},with x1 = 0 and xn+2 = 200 for the first level partition, and m

uniformly random numbers, {xi1, xi2..., xim}, between xi and xi+1 for the second level partition,

with n drawn uniformly from 1, 2, 3, 4 and m uniformly from 4, 5, .., 30.7

4.2.2 Procedure for the normalized Quadratic Scoring Rule

Given a vector p of elicited probabilities for each of the n bins that the state space is divided

in, the quadratic scoring rule, after the true state is revealed to be part of bin i is equal to

α + β · pi −
∑n

j=1 0.5 · β · p2
j . To normalize this score, α is set equal to 0.5 and β equal to 1.

4.2.3 Procedure for the normalized BDM/Karni method

For the BDM/Karni method, following Karni (2009) , after the agent has submitted her elicitation,

for each bin a separate random number ri is drawn from the uniform distribution between 0 and 1.

For each bin, if ri > pi with pi the probability assigned to bin i by the elicited distribution, then

for this bin a lottery is played out where the agent has a probability of ri to receive a prize Z. If

instead, ri ≤ pi then the agent will receive a prize Z if the true state s∗ falls in bin i. In order

to normalize the procedure such that the agent receives at most a payout of 1 and at minimum a

payout of 0, I choose Z = 1
n
with n the number of bins.

4.3 Simulation results

Figures 1 and 2 below illustrate the simulation results for the different elicitation procedures. For

Figure 1, simulated scores from the three methods are generated for truncated normal distributions

all based on a standard-deviation of 15, but with means ranging from 70 to 130. For Figure 2,

simulated scores from the three methods are generated for truncated normal distributions all based

on a mean of 100, but with the standard-deviation ranging from 1 to 100.
7The principal is free to select a partition procedure on each level that is more likely to either partition an

interval in a few large subintervals or a larger number of smaller intervals. For example, having more and smaller
intervals in the second level of the partition would lower the probability that the agent receives prize Y .
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Figure 1: Expected payoff sensitivity to wrong reporting of the mean
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Note: Simulation comparison based on reporting distributions with correct std-deviation but varying means. The
bin widths used for the grapsh are respectively 10,1 and 0.1.

Figure 2: Expected payoff sensitivity to wrong reporting of the variance
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Note: Simulation comparison based on reporting distributions with correct mean but varying std-deviations. The
bin widths used for the grapsh are respectively 10,1 and 0.1.

As we can see from the figures, both the quadratic scoring rule and the Karni elicitation provide

very ’flat’ payoffs for bin-widths smaller than 10, but the Random Partitions method keeps, it’s

payoff sensitivity to the agent misreporting her true beliefs. This could be a desirable property in
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situations where one wants to elicit the beliefs of an expert on the future value of a variable where

both small shifts in the variable could matter, but it’s also clear that any expert belief distribution

would have a substantial degree of variance.8 Appendix A shows the results of more simulations

with cases of multi-peaked and beta belief distributions.

5 Conclusion

This paper has introduced a new mechanism to incentivise belief elicitation, the Random Partitions

method. Three theoretical results have shown for this method (i) it always is a best response

for an agent to report her true beliefs, (ii) the conditions under which reporting a distribution

different from one’s true beliefs is not a best response, and (iii), the procedure can be used to elicit

beliefs for a continuous distribution over a finite interval such that reporting her true beliefs is

the agent’s unique best response. Furthermore I have reported simulation results which show that

also for a distribution over finite-state space, this method provides strong truth-telling incentives

when compared to the standardly used Quadratic Scoring Rule (Brier 1950 and e.g. Selten 1998).

Moreover, whereas both the Quadratic scoring rule and the BDM-based method (Becker et al. 1964

and Karni 2009) tend to provide more flat incentives as the state space grid becomes finer, the

incentive precision and strenght of the proposed Random Partitions method remains robust. The

results suggest that when eliciting a continuous distribution or a distribution over a state space with

many bins, the proposed Random Partitions method provides sharper incentives than currently

used elicitation mechanisms. One future extention to mention here is to look at the situation where

an agent, before reporting her beliefs, has the opportunity to aquire costly information that will

reduce the variance (or information entropy) of her belief distribution. A question to investigate

(theoretically and potentially experimentally) is to what degree agents’ willingness to pay to aquire

information is influenced by the incentive strength provided a belief elicitation mechanism. This

could provide another foundation for principals to prefer using elicitation mechanisms, such as the

Random Partitions method, that provide substantial truth-telling incentives.
8One example of an economic indicator likely to have these properties would be the future oil price.
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Appendix A, further simulation examples

Simulations are again based on counting the the share of elicitations ending in the agent receiving

a reward based on 100000 iterations.

Figure 3: Simulation results for assymmetric-multimodal distributions
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Figure 4: Simulation results using Beta distribution beliefs
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Appendix B, calculations for the three-state example

Calculations of the three-state example in section 2:

If the agent reports her true belief probabilities (F (a) = 0.45, F (b) = 0.3, F (c) = 0.25), then

under these beliefs the expected probability of receiving reward Y will be

F (a) · (P ({{a}, {b}, {c}}) + P ({{a, b}, {c}}) + P ({{a, c}, {b}}))

+F (b) · (P ({{a, b}, {c}}) + P ({{b, c}, {a}})) + F (c) · (P ({{a, c}, {b}}) + P ({{b, c}, {a}}))

= 0.45 · 0.8 + 0.3 · 0.4 + 0.25 · 0.4 = 0.58

Now instead if the agent submits the beliefs (G (a) = 0.56, G (b) = 0.2, G (c) = 0.24) then the

expected payout will be

F (a) · (P ({{a}, {b}, {c}}) + P ({{a, b}, {c}}) + P ({{a, c}, {b}}) + P ({{b, c}, {a}}))

+F (b) · (P ({{a, b}, {c}})) + F (c) · (P ({{a, c}, {b}}))

= 0.45 · 1 + 0.3 · 0.2 + 0.25 · 0.2 = 0.56

Second in case of the double partition with the above probabilities, again starting from the

true beliefs (F (a) = 0.45, F (b) = 0.3, F (c) = 0.25), given honest/accurate reporting the expected

payoff probabilitie will be:

F (a)·(P1 ({{a, b}, {c}}) + P1 ({{a, c}, {b}}) + P1 ({{b, c}, {a}}) + P1 ({{a, b, c}}) · (1− P2 ({{b, c}, {a}})))

+F (b)·(P1 ({{a, c}, {b}}) + P1 ({{b, c}, {a}}) + P1 ({{a, b, c}}) · (P2 ({{b, c}, {a}}) + P2 ({{a, b}, {c}})))

+F (c) · (P1 ({{a, b}, {c}}) + P1 ({{a, b, c}}) · (P2 ({{b, c}, {a}}) + P2 ({{a, c}, {b}})))

= 0.45 · ((0.2 + 0.2 + 0.2) + 0.4 · (1− 0.2))

+0.3 · (0.2 + 0.2 + 0.4 · (0.2 + 0.2))
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+0.25 · (0.2 + 0.4 · (0.2 + 0.2))

= 0.672

Now instead if the agent submits the beliefs (G (a) = 0.56, G (b) = 0.2, G (c) = 0.24) then the

expected payout will be

F (a) + F (b) · P1 ({{a, c}, {b}}) + F (c) · (P1 ({{a, b}, {c}}) + P1 ({{b, c}, {a}}))

0.45 + 0.3 · 0.2 + 0.25 · 0.4 = 0.61

So we get stronger incentives in the two-level partition case, also relatively (3.45% expected

payoff loss versus 9.23% in the double partition case here).

Appendix C, proof of bin-size sensitivity of the quadratic

scoring rule

Let the agent hold a continuous belief distribution Fover the interval [xmin, xmax] with finite length

l. We consider the scoring rule α+ β · pi −
∑n

j=1 0.5 · β · p2
j . Assume an agent holds a belief vector

p, but reports a vector rthe expected payoff in the payoff for the quadratic scoring rule, assuming

α = 0.5 and β = 1 will be:

n∑
k=1

pi ·

0.5 + ri −
n∑

j=1
0.5 · r2

j



= 0.5 +
(

n∑
k=1

pi · ri

)
− 0.5 ·

 n∑
j=1

r2
j


So the agent’s loss compared to reporting pwill be

0.5 +
(

n∑
k=1

pi · ri

)
− 0.5 ·

 n∑
j=1

r2
j

−
0.5 +

(
n∑

k=1
p2

i

)
− 0.5 ·

 n∑
j=1

p2
j


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=
(

n∑
k=1

pi · ri

)
− 0.5 ·

 n∑
j=1

r2
j

− 0.5 ·
 n∑

j=1
p2

i

 =
n∑

j=1
−0.5 · (pj − rj)2

Which gives us the “loss” function (see also the derivation of Selten,1998):

n∑
j=1
−0.5 · (pj − rj)2

Define x̄i as the upper cutoff of bin i in the grid partition of the interval and xi as the lower

cutoff of bin i. Now assume probability vectors p and r are derived from continious distributions

F and G with pdf’s f and g, created by having pi be equal to
´ x̄i

xi
f (x) dx and ri be equal to

´ x̄i

xi
g (x) dx. As the bin width goes to 0 and n approaches infinity, pj converges to l

n
·f
(

x̄i+xi

2

)
and

rj converges to l
n
· g
(

x̄i+xi

2

)
This gives us

limn→∞

n∑
j=1
−0.5 · (pj − rj)2 =

limn→∞ − 0.5 ·
n∑

j=1

(
l

n
·
(
f
(
x̄i + xi

2

)
− g

(
x̄i + xi

2

)))2

= limn→∞ − 0.5 · l
2

n2

n∑
j=1

(
f
(
x̄i + xi

2

)
− g

(
x̄i + xi

2

))2

= limn→∞ − 0.5 · l
n
·

 l

n
·

n∑
j=1

(
f
(
x̄i + xi

2

)
− g

(
x̄i + xi

2

))2


= −0.5 · l
∞
·
ˆ xmax

xmin

(f (x)− g (x))2 dx = 0
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As long as f and g are distributions with
´ xmax

xmin
(f (x)− g (x))2 dx attaining a finite value, we

have for given underlying F and G

limn→∞

n∑
j=1
−0.5 · (pj − rj)2 = 0

Thus the incentive strength of the quadratic scoring rule tends to 0 as the number of bins

increase (and consequently the bin width decreases).�
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