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Abstract

Conventional economic theory stipulates that output in Cournot competition is too low relative to

that which is attained in perfect competition. We revisit this result in a General Cournot-competitive

Equilibrium model with two industries that differ only in terms of productivity. We show that in general

equilibrium, the more efficient industry produces too little and the less efficient industry produces too

much compared to an optimal scenario with perfect competition.
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1 Introduction

Conventional economic theory should persuade us that industries operating under Cournot competition

produce too little output. We demonstrate that this is not necessarily true in a model of general equilibrium.

In a model with a fixed economy-wide input factor and two Cournot oligopolistic industries that differ only

in terms of productivity, we show that the less efficient industry produces too much output, whereas the

more efficient one produces too little. An optimal allocation of resources can be achieved by favouring the

more efficient sector through appropriate transfers such as subsidies.

2 The Model

We use a closed-economy version of Neary’s (2003; 2010) General Oligopolistic Equilibrium (GOLE) model.

There is one closed economy with two industries, i = 1, 2, each producing one homogeneous good. In every

∗Department of Economics, University of Bergen, Bergen, Norway. Email: Inger.Ervik@econ.uib.no
†Department of Economics, University of Oxford, Oxford, UK.
‡Department of Economics, University of Warwick, Coventry, UK. Email: C.Soegaard@warwick.ac.uk.

1



industry there are n symmetric firms. Firms are relatively large in their own industries, and they have

market power in their choice of output which is determined in a Cournot fashion. We assume, however, that

each firm perceives itself to be small in the economy as a whole, and for this reason it treats economy-wide

variables parametrically.1

We assume that entry is restricted such that firms make abnormal profits in equilibrium. All income

accrues to the aggregate household, and labour is the only factor of production. The unit labour requirement,

denoted θi, differs across industries, and we assume that industry 1 is more efficient than industry 2. We

normalise the unit labour requirement in sector 2, θ2 = 1, such that for sector 1 we have θ1 = θ < 1.

Preferences are represented by an additively separable utility function defined over the two goods, with each

sub-utility function quadratic:

U =

2∑
i=1

(aQi −
1

2
bQ2

i ), (1)

where Qi ≡
∑n
j=1 qij is the total consumption of good i and qij is the output of firm j in industry i. Utility

in (1) is maximised subject to the budget constraint,

2∑
i=1

PiQi ≤ I, (2)

where Pi denotes the price of good i and I is aggregate income. The first-order condition for the consumer’s

optimisation problem gives the following inverse demand function for good i:

Pi =
1

λ
(a− bQi) , with λ =

a(
∑2
i=1 Pi)− bI

(
∑2
i=1 P

2
i )

, (3)

where λ is the marginal utility of income, that is, the Lagrange multiplier associated with the budget

constraint. We denote the economy-wide wage rate in general equilibrium as w, and the government may

implement an industry-specific subsidy denoted si. It is assumed that industrial policies are financed through

lump-sum taxation of the representative household. Industrial policies and wage rates are determined en-

dogenously, the manner in which is to be explained below. When setting Cournot outputs firms treat

economy-wide variables λ and w as well as the policy variable si parametrically. Hence, we choose λ as our

numeraire, such that every nominal variable is expressed in terms of the inverse marginal utility of income

(i.e. real at the margin). We set λ = 1.

We begin by determining outputs. The profit of a firm j in industry i can be written as:

πij = (Pi − θiw + si)qij . (4)

1We could also assume that each industry represents an aggregate mass of a continuum of industries. This would bring the

model closer to the standard GOLE models, in addition to providing justification to the assumption that firms in each industry

are “small” in the economy as a whole. Such extension, however, does not affect the qualitative results of the paper.
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Maximising (4) with respect to the output of firm j using (3), we obtain the following equilibrium output of

firm j in industry i and total output of industry i as:

qij =
a− θiw + si
b(n+ 1)

, and Qi =
n(a− θiw + si)

b(n+ 1)
, (5)

where, by symmetry, Qi = nqij . The economy-wide wage rate can be solved from the full-employment

condition of a fixed labour force L:

L = θQ1 +Q2 = θ
n(a− θw + s1)

b(n+ 1)
+
n(a− w + s2)

b(n+ 1)
. (6)

The equilibrium wage rate then becomes:

w =
na(1 + θ) + n(θs1 + s2)− bL(n+ 1)

n(1 + θ2)
, (7)

where an overline is used to denote variables solved in general equilibrium. We assume that workers have an

outside option yielding a zero surplus such that a participation constraint can be expressed as w ≥ 0. As is

clear from (7), this implies a parameter restriction of a > bL(n+1)
(1+θ)n , which also guarantees the existence of a

Cournot equilibrium in the absence of industrial policy. Output in general equilibrium can now be derived

as:

Q1 =
na(1− θ) + n(s1 − s2θ) + θbL(n+ 1)

b(n+ 1)[θ2 + 1]
; (8)

Q2 =
naθ(θ − 1) + nθ(s2θ − s1) + bL(n+ 1)

b(n+ 1)[θ2 + 1]
. (9)

We first analyse the Cournot equilibrium in the absence industrial policies, that is s1 = 0 and s2 = 0. This

is done graphically in Figure 1. Equilibrium is attained at point A, and outputs in the two industries are

denoted respectively, Q
NI

1 and Q
NI

2 , where “NI” denotes “No Intervention”. The Production Possibilities

Frontier (PPF) is given by the resource constraint in (6), which defines the feasible set. It is clear from the

figure that the indifference curve passing through point A is not tangent to the economy’s PPF, but to the

price line P
NI

=
P
NI
1

P
NI
2

. This leads to the following lemma:

Lemma 1. The slope of the price line, P
NI

, which defines the marginal rate of substitution in the absence

of industrial policy, is strictly less than the slope of the economy’s PPF if and only if θ < 1.

Proof. In Appendix.

This implies that the representative consumer can achieve a higher utility within the feasible set by using

industrial policy for θ < 1. It is also clear from the Proof of Lemma 1 in the Appendix that if θ = 1, the

slope of the PPF is equal to PNI , such that it is the productivity heterogeneity which causes the discrepancy.

This is in line with Dixit and Grossman (1986), who find that the optimal industrial subsidy is zero in a

model which does not feature productivity differences across industries. A government which is interested in
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Figure 1: Equilibria in General Cournot-competitive Equilibrium.

maximising the utility of the representative consumer will set industrial policies to maximise indirect utility.

We restrict industrial policy to industry 1,2 and hence, the government solves the following problem:

max
s1

G(Q1, Q2) ≡ U(Q1) + U(Q2) s.t. Q2 ≥ 0 and s2 = 0. (10)

The constraint on Q2 is there to ensure an interior solution. In the Appendix we show that the optimal

industrial policy must satisfy:

s1 =


a(1−θ)
n , if bL(n+1)

(1+θ)n ≤ a <
bL

θ(1−θ) ;

bL(n+1)−naθ(1−θ)
nθ , if bL

θ(1−θ) ≤ a <
bL(n+1)
θ(1−θ)n ;

0, if a ≥ bL(n+1)
θ(1−θ)n .

(11)

The unrestricted solution, a(1−θ)
n , gives an interior solution for output which does not lie on the corner of

the feasible set. Evaluating (8) and (9), respectively, at this subsidy yields:

Q
S

1 =
a(1− θ) + θbL

b (θ2 + 1)
, and Q

S

2 =
aθ(θ − 1) + bL

b (θ2 + 1)
. (12)

The new equilibrium B is plotted in Figure 1, where output of the more efficient industry 1 has increased

and output of the less efficient industry 2 has decreased relative to the equilibrium without intervention.

The indifference curve passing through point B is now tangent to the economy’s PPF such that welfare

2We could also consider industrial policy for both industries, however, this would give us an infinite amount of solutions to

pairs of subsidies and/or taxes guiding the economy towards its social optimum without yielding additional insight.
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cannot be raised any further at that point. As the demand parameter a increases, the indifference curves

become flatter such that the demand for variety relative to quantity decreases; as a exceeds bL
θ(1−θ) , the social

optimum will thus be at the corner, that is, (Q
S

1 , Q
S

2 ) = (Lθ , 0). In this case, the government implements a

subsidy to industry 1 which drives the inefficient industry 2 out of business. For a ≥ bL(n+1)
θ(1−θ)n , the Cournot

equilibrium without intervention lies at the corner, in which case it is not possible to improve welfare within

the feasible set, and the optimal subsidy is therefore zero. The reason for the suboptimal quantities without

intervention is Cournot competition. In perfect competition where price equals marginal cost, the slopes of

the price line and the PPF are equal, and equilibrium would be attained at point B without any need for

industrial intervention. Interestingly, for the intermediate parameter range, industry 2 only exists due to

Cournot competition; under perfect competition, this industry would not be able to stay active. This leads

us to the following proposition:

Proposition 1. In the present General Cournot-competitive Equilibrium model with two industries that

differ only in terms of productivity, output of the more efficient industry is too low and that of the less

efficient industry is too high relative to the social optimum. Optimal subsidies that satisfy equation (11) can

be used to attain the optimal allocation of resources.

Proof. In Appendix.

Conventional economic theory suggests that Cournot quantities are too low relative to perfect competition.

In this paper we have shown that this result does not necessarily hold in general equilibrium. In fact, the less

efficient industry produces too much output relative to the more efficient one in general equilibrium. The

intuition is that since the more efficient industry earns higher mark-ups and has relatively higher market

power at the micro-level, then in a relative sense, it claims too little of the economy’s fixed endowment of

labour. Conventional industrial policy that uses micro-level welfare criteria to obtain an optimal subsidy for

the less efficient industry leads to adverse welfare effects at the macro-level if the more efficient industry is

not granted an even higher subsidy to compensate in general equilibrium.
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Appendix

Proof of Lemma 1

The slope of the economy’s PPF can be found from (6) as −θ. The marginal rate of substitution at the

Cournot equilibrium in the absence of intervention, P
NI

=
P
NI
1

P
NI
2

, can be found by evaluating the inverse

demand function (3) at, respectively, Q1 and Q2 from (8) and (9) for s1 = 0 and s2 = 0, and then dividing

the resulting expressions. We have,

P
NI

=
a(n+ 1)[θ2 + 1]− na[1− θ]− θbL(n+ 1)

a(n+ 1)[θ2 + 1] + naθ[1− θ]− bL(n+ 1)
,

such that −PNI < −θ if and only if:

a[θ2 + 1][1− θ]
a(n+ 1)[θ2 + 1] + naθ[1− θ]− bL(n+ 1)

> 0.

This equation is satisfied if and only if θ < 1, but notice also that for θ = 1, the slopes must be equal. q.e.d.

Derivation of Eq. (11)

Using the equilibrium quantities in, respectively, (8) and (9), the Lagrangian for the maximisation problem

in (10), takes following form:

L =

(
(aQ1 −

b

2
Q

2

1) + (aQ2 −
b

2
Q

2

2)

)
+ µQ2,

where µ is the Lagrange multiplier for the constraint Q2 ≥ 0. The Kuhn-Tucker conditions for this maximi-

sation problem are:

dL
ds1

=
(a(1− θ)− ns1)n

b(n+ 1)2[θ2 + 1]
− µ nθ

b(n+ 1)[θ2 + 1]
= 0;

L
dµ

= µ

(
naθ(θ − 1)− nθs1 + bL(n+ 1)

b(n+ 1)[θ2 + 1]

)
≥ 0, with µ = 0 if naθ(θ − 1)− nθs1 + bL(n+ 1) > 0 ,

where the constraint s2 = 0 has been used. The unconstrained solution, where µ = 0, can be found from

the first condition as: sUC1 = a(1−θ)
n , and the parameter range for which this solution is valid can be found

by substituting it into Q2 in (9):

Q2

(
sUC1

)
> 0⇒ aθ(θ − 1) + bL

b (θ2 + 1)
> 0⇒ a <

bL

θ(1− θ)
.

The constrained solution for s1 can be found from the second Kuhn-Tucker condition, and together with the

first condition, we have:

s1 =
bL(n+ 1)− naθ(1− θ)

nθ
, and µ =

bL

nθ2
.
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It is also possible that the Cournot equilibrium lies at the corner of the feasible set, that is
(
Q
NI

1 , Q
NI

2

)
=(

L
θ , 0
)
. To rule this out we need:

Q
NI

2 > 0⇒ naθ(θ − 1) + bL(n+ 1)

b(n+ 1)[θ2 + 1]
> 0⇒ a <

bL(n+ 1)

θ(1− θ)n
.

Proof of Proposition 1

Denote by P
S

1 and P
S

2 , respectively, the prices faced by the representative consumer when optimal policies

in (11) are implemented. The slope of P
S

=
P
S
1

P
S
2

, or the marginal rate of substitution with optimal subsidies,

can be found by evaluating the inverse demand function (3) at, respectively, Q
S

1 and Q
S

2 , from (12), and

then dividing the resulting expressions. We have,

−PS = −θ,

which is also the slope of the PPF in (6). For the corner solution where
(
Q1, Q2

)
=
(
L
θ , 0
)
, the marginal

rate of substitution is
a−bLθ
a . This is greater than the slope of the PPF, −θ, if and only if a > bL

θ(1−θ) , which

is satisfied at the corner. q.e.d.
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