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Abstract. Considered here are transferable-utility, coalitional produc-
tion or market games, featuring differently informed players. It is assumed
that personalized contracts must comply with idiosyncratic information. The
setting may create two sorts of shadow prices: one for material endowments,
the other for knowledge. Focus is on specific, computable solutions that are
generated by such prices and belong to the private core. Solutions of that sort
obtain under standard regularity assumptions.
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1. Introduction
Economics deals with various ways to handle scarcity. Prominent problems, and corre-
sponding institutions, concern production, valuation or allocation of limited material
items. Equally important issues revolve though, around acquisition, distribution and
sharing of information. The latter object is, however, just like other more tangible
commodities, often unevenly distributed, scarce, or quite simply lacking.
Efficient instruments that handle lacking but symmetric information come as con-

tracts offered say, by insurers or financial bodies. In contrast, presence of asymmetric
information frequently impedes efficiency, eliminating maybe good opportunities for
concerted actions, bilateral exchange, or mutual insurance.
That observation has inspired many studies on contracts under differential knowl-

edge about the state of the world. Main concerns were always with efficiency, incentive
compatibility, and existence of appropriate solutions. In particular, the appropriate-
ness and properties of various core versions have been scrutinized in this context.1

This paper pursues that tack, placing the private core at center stage and specializing
to transferable utility.
Motivation stems from instances where all parties worship maximization of quasi-

linear utility or monetary payoff. For the argument, we construe these as profit-
maximizing producers, each willing to accept side-payments. Technologies, endow-
ments, and informations differ across agents. Everyone acts, more or less, in three
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intertwined roles: as producer, resource owner, and ”informer.” It appears natural
therefore, that contracts pay each party in three corresponding capacities.
We inquire whether there exist acceptable and feasible payment schemes of such

sort. A leading maxim says that scarcity commands a price. Another guideline
tells that prices of private, perfectly divisible, material commodities typically emerge
as shadow items, brought to the fore by differential calculus. There is however,
no direct counterpart concerning marginal amounts of information. A rich theory
notwithstanding [8], [24], to measure information content still seems difficult - and to
divide it even harder.
These pessimistic observations seemingly preclude differentiation, classical or not,

as a chief vehicle. Closer scrutiny shows however, that Lagrangian duality, already
known to furnish standard shadow prices, may help to evaluate information as well.2

Instrumental to this end are multipliers that relax information constraints.
The prospect of such relaxation motivates our inquiry on several grounds. First,

since dual problems often come more tractable than the primal version, one may
more easily use them to compute or display explicit core solutions. Another bonus
of duality is that questions about existence of equilibrium prices can be divorced
from those concerning allocations. Further, to test intuition, it’s worthwhile to have
handy some simple or practical instances. In particular, one may want to detect
information rent if any. Such rent could accrue to totally unproductive, quite poor,
but complementary informed parties. Finally, but admittedly on a more technical
note, it’s interesting to see precisely where, how, and to what degree the availability
of price-generated imputations depends on convex preferences.
As always in game theory, whether cooperative or not, it matters much who is

informed about what and when. Equally crucial is the protocol that prescribes how
play should proceed. Since received models differ on these points, several solution
concepts have come up [19], [27]. Our setting is particularly simple. It comprises
merely two stages. Everybody commits plans ex ante, and private information obtains
only ex post. The absence of an interim stage, and the necessity of maintaining
material balance, ensures that actions comply with plans and information. Unlike
[18], [20] incentive compatibility will cause no concern here.
The paper addresses several groups of readers. One comprises economists and

game theorists who wish to analyze, compute or display some "quantifiable" effects
of differential information. Another group include actuaries and finance theorists
dealing with differentially informed agents. Also addressed are mathematicians and
operations researchers interested in how convex analysis applies to parts of game
theory.
Sections 2&3 formalize the setting and the game. Section 4 considers core so-

lutions generated by shadow prices - as illustrated in Section 5. Section 6 records
some properties of solutions. Sections 7&8 deal with variational stability and non-
transferable utility. Section 9 collects examples, and Section 10 concludes.

2This observation has long been central in stochastic programming; see e.g. [13], [14], [16].
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2. Formulation
The subsequent model requires several sorts of data, presented next. Some readers
might contend with perusing this section, and return to details when needed.

Players form a finite, fixed set I of economic agents, each construed as a producer
who aims at maximal expected profit.

Uncertainty prevails as to which scenario will materialize next. These constitute
a comprehensive set S of mutually exclusive states. All parties understand that one
s ∈ S will come about in a while. To simplify some technical and mathematical issues
assume S finite.3

The occurrence of the state separates time in two periods, called ex ante and ex
post. Ex ante, decisions are committed in face of non-negligible uncertainty. Ex post,
when a state has occurred, players receive private information, honor contracts, and
collect proceeds. The realized state need never be identified, and information can
remain private.

Information ex post, about the realized state, may differ in degree or nature among
players. For example, when s is a vector, various agents may get to see different
components. Formally, at the second stage, individual i can only ascertain to which
part Pi(s) in a prescribed partition Pi of S the true state s belongs.
For the subsequent analysis let Fi denote the field formed by taking unions of

parts Pi ∈ Pi. More generally, a non-empty family F of subsets in S is declared a
field if stable under complements and unions. Minimal members of F are referred to
as atoms. A field F embodies coarser information than the (finer) field F̂ iff F Ã F̂ .
The polar instance of symmetric information has all fields Fi equal. Partitions

then coincide across players, and ex post everybody knows that merely one and the
same part of the state space will be worth caring about. This case is covered below
but not especially considered - except as a good case for mutual insurance.

Commodity bundles are codified as vectors in a standard Euclidean space X with
coordinates indexed by the goods in question. A contingent commodity bundle x(·)
is a mapping s ∈ S 7→ x(s) ∈ X . When confusion cannot result, we write simply x
instead of x(·). Let X := X S denote the space of all contingent commodity bundles.
x ∈ X is declared adapted - or measurable with respect - to a field F , and we write
x ∈ F , iff x is constant on each atom of F .
Agent i has endowment ei ∈ Fi. Construe ei(s) ∈ X as the resource bundle owned

by him in state s. If ei, as conceived ex ante, were not adapted to Fi, the latter should
be refined.
Given any function f defined on S, its ”level sets” constitute a partition that

generates a minimal field F(f) with respect to which f is adapted. Thus we re-

3We take care though, to state things so as facilitate generalizations.
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quire that F(ei) ⊆ Fi. A strict inclusion is acceptable. It would mean that i has at
hand more information than imbedded in ei. We shall not suppose that he observes
eI(s) :=

P
i∈I ei(s) ex post. Clearly, if he does, then F(eI) ⊆ Fi.

The objective of player i is to maximize a proper monetary payoff πi(xi) when
xi ∈ Fi. We allow πi to take the value −∞. This device accounts for constraint vi-
olation by means of an infinite penalty. It serves as Occam’s razor, allowing us to
focus on essential objectives - and to shy away from particular features. We refrain
therefore, from spelling out what feasibility might mean in full and quite varied detail.
Emphasized though, is that πi(·) incorporates all constraints but xi ∈ Fi. The latter
is singled out for two reasons. First, the only treaties agent i can credibly commit to,
are constant across contingencies he cannot discriminate. Second, only such treaties
are enforceable. In short, imperfect information makes for incomplete contracts or
partial commitments.4

Accommodated as a prominent instance is expected payoff

πi(xi) =
X
s∈S

Πi(s, xi(s))μ(s) (1)

featuring a state-dependent ”integrand” Πi(s, χ) and a positive probability measure
μ. Because xi ∈ Fi, we may replace Πi(·, χ) with its adapted version E [Πi(·, χ) |Fi ] .
Also, if necessary, one may modify Πi to have a measure μi that better mirrors agent
i’s beliefs.

Exchange and sharing of commodities is presumed frictionless and free of restric-
tions. That is, all goods are perfectly divisible and transferable. So, ex ante coalition
C ⊆ I might allocate any xi ∈ Fi to i ∈ C provided πi(xi) > −∞ andX

i∈C
xi = eC :=

X
i∈C

ei. (2)

If coalition C were indeed to form, we envisage that this sort of agreement comes as
an ensemble of contracts, one for each member i ∈ C, specifying, in terms verifiable
by him, precisely what bundle xi(s) he is entitled to in state s.
Denote by ∨i∈CFi the smallest field that contains all Fi, i ∈ C. Evidently, both

sides of (2) are adapted to ∨i∈CFi. It may well happen though, that F(eC) is strictly
coarser than ∨i∈CFi. Indeed, it is interesting, and not precluded, that F(eC) be totally
uninformative, meaning that eC is a constant.
Anyway, pooling mechanism (2) has two economic advantages. First, it allows re-

source transfers across C. Second, diversity of information permits greater flexibility

4Two competing models deviate at this point. In one, all contracts are written on common
information ∧i∈IFi = ∩i∈IFi, this leaving fairly few or slim possibilities for mutual agreements. In
the other setting, all information is pooled into ∨i∈IFi. But then, quite likely, some parties must
commit ex ante to terms they hardly can verify ex post.
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in adapting pro-actively to various contingencies.

Prices on contingent commodity bundles are linear functionals, mapping X into
R. These functionals constitute a vector space X∗ called dual to X. Presence of a star
henceforth signals that the object in point is a price - or an operator on such items.
It’s convenient to have an explicit representation of members x∗ ∈ X∗. For that

purpose fix hereafter a probability measure μ on S with μ(s) > 0 for all s ∈ S. In
particular, if some positive μ reflects prior and common probabilistic beliefs, then
that μ becomes a most natural candidate to use. μ generates a positive definite,
bilinear form

hx∗, xi :=
X
s∈S

x∗(s) · x(s)μ(s)

on X, the dot indicating the standard (or another) inner product on the underlying
commodity space X . By the Riez representation theorem a dual vector corresponds
to a unique linear form hx∗, ·i . With this sort of identification the space at hand
becomes self-dual; that is: X = X∗.

Expectations and conditional versions of these are essential below. The positive
probability measure μ, just mentioned, gives rise to an unconditional expectation
E : X → X by Ex :=

P
s∈S x(s)μ(s). Further, for each field F in S, generated by a

partition P, there is a conditional expectation operator E [· |F ] : X→ X, defined by

μ(P )E [x |F ] (s) := E [1Px] for each state s ∈ P and every part P ∈ P.

Here the indicator 1P equals 1 on part P and 0 elsewhere. Since by assumption
μ(P ) > 0, the customary formula applies:

E [x |F ] (s) = E [1Px]

μ(P )
=
X
s0∈P

x(s0)
μ(s0)

μ(P )
when s ∈ P ∈ P.

Because E [x |F ] is piecewise constant, it may be construed as a mapping

P ∈ P 7→E [x |F ] (P ) :=
X
s0∈P

x(s0)μ(s0)/μ(P ).

Most important, x is F-measurable iff x = E [x |F ] . In particular, writing Ei :=
E [· |Fi ], we see that xi ∈ Fi amounts to

xi = Eixi. (3)

Note that EF := E [· |F ] , when seen as a linear operator from X to X, has a standard
S × S real matrix representation with μ(s0)

μ(P )
in entry (s, s0) ∈ S × S when s, s0 ∈ P,

and 0 otherwise.
To operator EF : X→ X is associated a transpose E∗F : X∗ → X∗, implicitly

defined by hE∗Fx∗, xi = hx∗, EFxi for all x∗ ∈ X∗, x ∈ X. To identify E∗F explicitly,
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let B be a basis for the linear space X and pick any b ∈ B. Denote by xbs ∈ X the
vector that has b in component s, and 0 elsewhere. That is, xsb : S → X equals δs0sb
where δs0s = 1 when s0 = s, and 0 otherwise. Let P (s) be the part of P that contains
s. Note that

EFxsb(s
0) =

½
bμ(s)/μ(P ) when s0 ∈ P (s)
0 otherwise.

So, for any x∗ ∈ X∗ it holds E∗Fx∗(s) · bμ(s) =

hE∗Fx∗, xsbi = hx∗, EFxsbi =
X

s0∈P (s)

x∗(s0) · b μ(s)
μ(P )

μ(s0) = EFx
∗(s) · bμ(s),

from which it follows that E∗F = EF . Thus EF is symmetric. Also,

hEFx∗, xi = hx∗, EFxi =
X
P∈P
(EFx

∗)(P ) · (EFx)(P )μ(P ).

3. The Game and Core Solutions
Every party knows all triples (πi,Pi, ei), i ∈ I, ex ante.5 Since payoffs and resources
are transferable, the prescribed data generates a transferable-utility, cooperative game
in which coalition C ⊆ I can aim at getting value ≥

vC := sup

(X
i∈C

πi(xi) :
X
i∈C

xi = eC and xi = Eixi for all i ∈ C

)
. (4)

Here v∅ = 0, and, as before, eC :=
P

i∈C ei is shorthand for the aggregate endowment
held by coalition C. Note that ”excess demand” xi − ei of any agent i is adapted to
his information. Also note that problem (4) is linearly constrained. This feature is
most convenient for theoretical analysis and practical computation. In particular, the
Kuhn-Tucker optimality conditions come without any constraint qualification.
The economic attractions of pooling objectives and endowments, as done in (4),

are evident: The most efficient producers can utilize scarce resources, and comple-
mentary production factors can be brought together. Formally, the advantages of
coordination reflect in superadditive values:

vC1∪C2 ≥ vC1 + vC2 whenever C1, C2 ⊂ I are disjoint.

Remark. When each πi(ei) ≥ 0, the set function C 7→ vC becomes monotone whence
a capacity [10], [29]. A capacity is called convex iff vC1∪C2 + vC1∩C2 ≥ vC1 + vC2 . The
marginal value vC∪i − vC of an outside player i joining coalition C then increases with C.
Instance (4) is however, not generally convex. To see this, follow [31], let Fi = {∅, S} ,
and posit

πi(xi) := sup {hȳ, yii : Ayi = xi, yi ≥ 0}
5In particular, players cannot offhand redistribute property or discard endowments; see [5], [21].
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where A maps an ordered Hilbert space Y linearly into X, and ȳ ∈ Y∗. Then

vC = v(eC) := sup {hȳ, yi : Ay = eC , y ≥ 0} (5)

with vC = −∞ whenever linear program (5) is infeasible. Since the reduced function
e 7→ v(e) so defined is concave, its generalized differential ∂v(·) is monotone decreasing [7].
This points to possible disadvantages of joining a coalition last. ¤

Anyway, whenever somebody joins a coalition he may bring three benefits. First,
if endowed, he adds to the aggregate holding. Second, if efficient, he expands the
joint production capacity. Third, if additionally informed, he makes for more flexible
exchanges.
Given the characteristic function C 7→ vC , defined in (4), we want to ”solve” the

game, using the core as solution concept. Specifically, a payment pattern (ui) ∈ RI

is said to reside in the private core iff

Pareto efficient:
P

i∈I ui = vI , and
stable against blocking:

P
i∈C ui ≥ vC for all C ⊂ I.

A chief concern is that the core could be empty. Put differently: the question is
whether the game is balanced or not? In that regard the following result can be
established along well known lines; see [30]:

Proposition 3.1. (Balanced games [35]) Suppose all payoff functions πi(·) are
concave. Then the core is non-empty in every subgame which involves a player com-
munity C ⊆ I that has finite value vC. In particular, when vC is finite for all C ⊆ I,
the entire game becomes totally balanced. ¤

4. Price-Supported Core Solutions
Proposition 3.1 isn’t quite satisfying. It just deals with existence, and it presumes
concave payoffs. Further, one would want computable solutions, brought out in con-
structive or explicit manner. And most important, Proposition 3.1 doesn’t indicate
how cooperation could come about.
These objections make us envision exchange markets where the agents meet anony-

mously and sign price-mediated contracts. Accordingly, consider problem (4) from a
dual and price-oriented vantage-ground. As usual, associate a multiplier (price) vec-
tor x∗ ∈ X∗ to constraint (2) and a similar vector x∗i ∈ X∗ to constraint (3). Related
to problem (4) is thus a standard Lagrangian

LC(�x, �x
∗) : =

P
i∈C {πi(xi) + hx∗, ei − xii+ hx∗i , Eixi − xii}

=
P

i∈C {πi(xi)− hx∗ + x∗i −Eix
∗
i , xii+ hx∗, eii} .

Here �x := (xi), �x∗ := (x∗, x∗i , i ∈ I), and hx∗i , Eixii = hE∗i x∗i , xii = hEix
∗
i , xii . The

interpretation of LC is commonplace but worth recalling all the same. Suppose indi-
vidual i ∈ C could add a perturbation ∆ei ∈ X to his endowment at cost hx∗,∆eii .
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Upon doing so constraint (2) would take the relaxed formX
i∈C

xi =
X
i∈C
(ei +∆ei). (6)

Further imagine that instead of (3) member i ∈ C could face the looser constraint

xi = Eixi +∆xi, (7)

with ∆xi ∈ X chosen freely but at extra cost hx∗i ,∆xii . In that relaxed setting
coalition C could achieve overall payoff

LC(�x, �x
∗) = sup

(∆ei,∆xi),i∈C

(X
i∈C

[πi(xi)− hx∗,∆eii− hx∗i ,∆xii] : (6) & (7) hold
)
.

Plainly, the more freedom in choosing perturbations, the richer in detail the corre-
sponding price regimes. For such reasons we face, right here, a crucial modelling
choice, namely: Should the perturbed version (6) of an equation that, in essence, ac-
counts for material balances, also embody extra information? We choose to block
this avenue, our motivation being to divorce payments for tangible endowments from
those concerning information. Accordingly, and because the grand coalition C = I
is of chief interest, we insist from here on that any endowment price x∗ be F(eI)-
measurable.
After these considerations declare now �x∗ = (x∗, x∗i , i ∈ I) a shadow price or

Lagrange multiplier vector iff, under that price regime, access to a competitive market
for ½

material perturbations: ∆e = E [∆e |F(eI)] and
informational perturbations: ∆xi, i ∈ I,

offers the grand coalition no advantage. Formally and more simply, call �x∗ a shadow
price iff

vI ≥ sup
�x

LI(�x, �x
∗). (8)

In mathematical terms, �x∗ realizes vI as the saddle value of LI . To wit, �x∗ qualifies
as shadow price iff

vI ≥ sup
�x

LI(�x, �x
∗) ≥ inf

�x∗
sup
�x

LI(�x, �x
∗) ≥ sup

�x
inf
�x∗

LI(�x, �x
∗) ≥ vI .

To bring out economic and game-theoretic implications of such objects let

f (∗)(x∗) := sup {f(x)− hx∗, xi : x ∈ X}

denote the conjugate of a proper function f : X→ R∪ {−∞} . Clearly, f (∗)(x∗) is
lower semicontinuous convex, and it records the profit that accrues to a producer
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who enjoys revenue function f(·) and pays price x∗ for inputs. Separable instances
f(x) =

P
s∈S fs(x(s))μ(s) give

f (∗)(x∗) =
X
s∈S

f (∗)s (x∗(s))μ(s).

In terms of conjugates the additive separability of LC implies that

sup
�x

LC(�x, �x
∗) =

X
i∈C

n
π
(∗)
i (x

∗ + x∗i −Eix
∗
i ) + hx∗, eii

o
. (9)

We can now state a chief result forthwith:

Theorem 4.1. (Price-supported core solutions) Each shadow price �x∗ =
(x∗, x∗i , i ∈ I) generates a solution (ui) ∈ RI in the private core by the formula

ui = ui(�x
∗) := π

(∗)
i (x

∗ + x∗i −Eix
∗
i ) + hx∗, eii . (10)

Proof. For any coalition C ⊆ I and any multiplier vector �x∗ it holds via (9) thatX
i∈C

ui =
X
i∈C

n
π
(∗)
i (x

∗ + x∗i −Eix
∗
i ) + hx∗, eii

o
= sup

�x

LC(�x, �x
∗)

≥ inf
�x∗
sup
�x

LC(�x, �x
∗) ≥ sup

�x
inf
�x∗

LC(�x, �x
∗) = vC .

Thus
P

i∈C ui ≥ vC . Since C ⊆ I was arbitrary, this takes care of stability against
blocking. Further, because

P
i∈I ui ≥ vI , for Pareto optimality we need now only

verify that
P

i∈I ui ≤ vI . But the last inequality follows from (8) and (9). ¤

Theorem 4.1 begs the question whether Lagrange multipliers exist? To ensure exis-
tence, concavity of each πi(·) would be most convenient - as Proposition 3.1 already
indicated. That property embodies risk aversion, but is really not required. Instead
comes a somewhat weaker assumption about convoluted preferences, often assigned a
so-called a representative agent.
Before regarding the preferences of that fictive fellow, recall that sup-convolution

(4) contributes towards concavity of the resulting, reduced function. Broadly, by ad-
mitting many and small agents the optimal value vI = v(eI) becomes ”more concave”
in eI . The linear support of e 7→ v(e) from above at e = eI is what decides existence
of shadow prices. To emphasize this fact consider the aggregate but perturbed payoff
function

π(∆e,∆x) := sup

(X
i∈I

πi(xi) :
X
i∈I

xi = eI +∆e & xi = Eixi +∆xi ∀i ∈ I

)
(11)

where ∆e is F(eI)-measurable. Observe that π(0, 0) = vI . Since shadow prices bear
on differential properties of π, recall that a proper function f, mapping a vector space
Y into R∪ {−∞} , has a supergradient y∗ ∈ Y∗ at a point y iff

f(•) ≤ f(y) + hy∗, •− yi .
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We then write y∗ ∈ ∂f(y) and declare f superdifferentiable at y.

Theorem 4.2. (Characterization and existence of shadow prices)
• �x∗ = (x∗, x∗i , i ∈ I) is a shadow price iff �x∗ ∈ ∂π(0, 0). Thus existence of a shadow
price is ensured iff the perturbation function π is superdifferentiable at (0, 0).
• Denote by π̂ the smallest concave function ≥ π, the latter defined in (11). It suf-
fices for existence of a shadow price, whence of a core solution (10), that π̂(·, ·) be
finite-valued near (0, 0) with π̂(0, 0) = vI . In particular, if all πi are concave, with
π(·, ·) finite near (0, 0), then at least one shadow price regime exists.
• No core solution of the sort (10) exists if there is a strictly positive duality gap:

d := inf
�x∗
sup
�x

LI(�x, �x
∗)− vI .

In this case, any scheme (10) entails aggregate overpayment ≥ d.

Proof. Plainly, �x∗ = (x∗, x∗i , i ∈ I) ∈ ∂π(0, 0) iff

π(∆e,∆x)− hx∗,∆ei−
X
i∈I
hx∗i ,∆xii ≤ π(0, 0)

for all ∆x = (∆xi) and each F(eI)-measurable ∆e. In turn, via substitutions ∆e =P
i∈I(xi − ei), ∆xi = xi −Eixi, and π(0, 0) = vI , this is equivalent to

LI(�x, �x
∗) =

X
i∈I
{πi(xi) + hx∗, ei − xii+ hx∗i , Eixi − xii} ≤ vI for all �x,

whence to (8). This takes care of the first bullet. For the second simply note that
the ”concavification” π̂ of π has a supergradient at each point near which it is finite-
valued, and evidently, ∂π̂(0, 0) ⊆ ∂π(0, 0) because π̂(0, 0) = π(0, 0). Finally, the
assertion after the third bullet is justified by the fact that each instance of (10) yieldsP

i∈I ui ≥ vI + d. ¤

Appendix mentions further properties of shadow prices and discusses existence of
optimal allocations.

5. Some Production Games
For more concreteness and intuition this section singles out a few instances, all mo-
tivated by joint production.

Example 5.1. (Linear Production Games) The computational and expressive
power of linear programming, with modern extensions [6], motivates a brief look at
cooperative producers who all enjoy linear technologies [31]. A special instance was
already considered in (5). Here, more generally posit

πi(ei) := vi := sup {hci, yii : Aiyi ≤ ei, yi ≥ 0} (Pi)
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where the objective

hci, yii := E [ci · yi] =
X
s∈S

ci(s) · yi(s)μ(s),

embodies Fi-adapted vectors ci(s) and yi(s) that reside in an Euclidean space Yi.
The constraints in (Pi) mean that Ai(s)yi(s) ≤ ei(s) and yi(s) ≥ 0 for all s. The
Fi-adapted operator (or matrix) Ai(s) maps Yi into X , and both these spaces are
ordered. Problem (4) now amounts to the following aggregate linear program:

vC := sup

(X
i∈C

hci, yii :
X
i∈C

Aiyi ≤ eC with yi ≥ 0 and Fi-adapted

)
. ¤ (PC)

πi as defined in (Pi) is a reduced function: πi(xi) := supyi Πi(xi, yi). This feature,
and the importance of such instances, speaks against presuming πi smooth.6 Linear
instances, like the one just described, cause few concerns with (primal-dual) exis-
tence. Also, as one would expect, no direct information rent accrues because players
are risk-neutral:

Proposition 5.1. (Linear imputations) Suppose the aggregate linear problem (PI)
has finite optimal value vI. Let x∗ and y∗i , i ∈ I, be Lagrange multipliers - alias op-
timal dual variables - associated to

P
i∈I Aiyi ≤ eI and yi = Eiyi, i ∈ I, respectively.

Then the payment pattern
i ∈ I → hx∗, eii

belongs to the private core. This happens if x∗ and y∗i , i ∈ I, optimally solve the dual
problem

min hx∗, eIi s. t. x∗ ≥ 0and ci ≤ A∗ix
∗ + y∗i −Eiy

∗
i for all i. ¤

Example 5.2 (Piecewise linear objectives) Existence of several production lines
often leads to instances

πi(xi) =

½
min {Ah(xi) : h ∈ H(i)} when xi ∈ Xi ∩Fi

−∞ otherwise,

with each Ah affine, the index set H(i) finite, and the constraint set Xi polyhedral.
Then (4) amounts to the linear program

vC = max
X
i∈C

ti s. t. ti ≤ Ah(xi), xi ∈ Xi ∩Fi for each h ∈ H(i) and i ∈ C.

6Linear objectives belong to the wider and most important class of polyhedral functions, defined
as those whose hypograph equals the intersection of finitely many closed half-spaces [33]. Since the
conjugate of such functions are polyhedral as well, formula (10) becomes tractable.



Private Information, Transferable Utility, and the Core 12

When, as right here, f(x) := min {x∗hx+ rh : h ∈ H} , one may show that

f (∗)(x∗) = inf

(X
h

r∗hrh : r
∗
h ≥ 0,

X
h

r∗h = 1,
X
h

r∗hx
∗
h = x∗

)
, (12)

with the understanding that inf ∅ = +∞. Thus, f (∗)(x∗) = +∞ iff x∗ /∈ conv {x∗h : h ∈ h} .
¤

Example 5.3. (A single producer and private resource owners) Producer
0 has endowment e0 = 0 and concave, state-dependent payoff function Π0s : X →
R∪ {−∞}. Resource owner i ∈ I−0 has endowment ei and gets payoff πi(xi) = 0
when xi = 0, otherwise −∞. Posit I := {0} ∪ I−0. Then

vC :=

⎧⎨⎩ −∞ if 0 /∈ C and eC 6= 0,
0 if 0 /∈ C and eC = 0,
π0(eC) := EΠ0s(eC(s)) otherwise.

Trivially π
(∗)
i = 0 for each i 6= 0. Consequently, resource owner i receives payment

ui = hx∗, eii =
P

s x
∗(s) · ei(s)μ(s), and the producer gets

u0 = π
(∗)
0 (x

∗ + x∗0 − E0x
∗
0) =

X
s∈S

n
Π
(∗)
0s (x

∗(s) + x∗0(s)−E0x
∗
0(s))

o
μ(s).

Note that, as long as F(eI) remains fixed, only the producer’s information structure
comes into effect. Therefore, if F(eI) is replaced by a finer field F̂(eI), the resource
price x̂∗ is likely to vary more across S. In extremis, suppose an atom P ∈ ∩i∈IPi
splits into two non-empty parts P−, P+ identifiable only by the producer and one
resource owner i. Further suppose resources are markedly less valuable in P− than
in P+. Consequently, if ei is high in P− and low in P+, its owner looses. In short,
better information improves vI , but the distributional impacts are not clear. ¤

6. Some Properties of Price-generated Imputations
The last term in formula (10) reimburses agent i the value hx∗, eii of his endowment.
In case X = RG for a finite set G of goods,

hx∗, eii =
X
g∈G

E(x∗g · eig) =
X
g∈G

©
Ex∗g · Eeig + cov(x∗g, eig)

ª
. (13)

As in finance, i receives, besides his risk-free value, a covariance correction for his good
g endowment eig.When eig is anti-correlated with eIg, that correction is positive. This
feature derives from the monotonicity of the endogenous price curve eI = e 7→ x∗(e):

Proposition 6.1. (A decreasing price curve) It holds that

he− e0, x∗(e)− x∗(e0)i ≤ 0 (14)
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for all aggregate endowments e, e0 where the shadow resource prices x∗(e) and x∗(e0)
exist.

Proof. Let v̂I(eI) denote the smallest concave function ≥ vI(eI) defined by (4).
Since x∗(e) ∈ ∂v̂I(e) and x∗(e0) ∈ ∂v̂I(e

0), it holds

v̂I(e
0) ≤ v̂I(e) + hx∗(e), e0 − ei and v̂I(e) ≤ v̂I(e

0) + hx∗(e0), e− e0i .

The conclusion now obtains by adding the last two inequalities. ¤

The first component in (10) reflects production profit, calculated at a resource price
x∗ translated by an idiosyncratic component x∗i −Eix

∗
i that stems from private infor-

mation. One might call pi := x∗ + x∗i − Eix
∗
i an information-corrected shadow price

for agent i. As one would expect, most often that price benefits him:

Proposition 6.2. (Individual gains) Agent i strictly benefits from collaboration if
π
(∗)
i (pi) > π

(∗)
i (x

∗).

Proof. This is immediate from ui = π
(∗)
i (pi)+hx∗, eii > π

(∗)
i (x

∗)+hx∗, eii ≥ πi(ei). ¤

While equal treatment is standard in the customary core, and in Walras equilib-
rium as well, differential information may overthrow that property; see [1]. Here
though, transferable utility restores it:

Proposition 6.3. (Equal treatment) Agents who have equal endowments, in-
formation, and preferences, receive the same price-generated imputation (10). ¤

We have stressed the advantages of cooperation. It may happen though, that some
agent prefers to play no part:

Proposition 6.4. (On dummies or outsiders) Imputation (10) offers agent i
autarky payment ui = πi(ei) iff the information-corrected shadow price ”coincides”
with his marginal payoff; that is, iff

pi := x∗ + x∗i − Eix
∗
i ∈ ∂πi(ei). (15)

Proof. Since x∗i −Eix
∗
i ∈ kerEi and ei is Fi-measurable, hx∗i −Eix

∗
i , eii = 0. There-

fore autarky payment happens iff

π
(∗)
i (pi) + hpi, eii = πi(ei),

or equivalently, when

π
(∗)
i (pi) := sup {πi(xi)− hpi, xii : xi ∈ X} = πi(ei)− hpi, eii .
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Plainly, the function xi 7→ πi(xi)− hpi, xii is maximal at xi = ei iff (15) holds. ¤

Presence of players with linear objectives facilitate risk sharing. Likewise, when
information is symmetric the prospects of mutual insurance appear good:

Proposition 6.5. (Symmetric information and mutual insurance) Suppose
all Fi = F are equal and generated by a common partition P. Also suppose πi is
of form (1) with Πi(s, ·) adapted to the common F . Then coalition C has value
vC =

P
P∈P vC(P )μ(P ) where

vC(P ) := sup

(X
i∈C

Πi(s, χi) :
X
i∈C

χi = eC(s)

)
for each s ∈ P.

Moreover, ui =
P

P∈P ui(P )μ(P ) with

ui(P ) = Π
(∗)
i (s, x

∗(s)) + x∗(s) · ei(s) for each s ∈ P.

Thus, cooperative gains obtain only via contingent transfers.

Proof. With no loss of generality replace S with P. After such replacement every-
body has a perfect information structure whence the information constraints can all
be ignored. ¤

An opposite extreme setting deserves notice. Suppose players are exclusively in-
formed in that there exists a partition {Si, i ∈ I} of S such that for any i ∈ I it
holds

Pi ∈ Pi ⇒
½

Pi = Sc
i or

Pi ⊆ Si.

Let ∆xi = xi − ei denote the net demand of player i. Clearly, ∆xi is constant on Sc
i .

But ∆xi must be constant on Si as well. If not, some agent j 6= i would have xj vary
across Si, a possibility blocked by his measurability constraint. In short, even if ei is
highly variable within Si, player i can only exchange bundles that are constant across
Si against others that stay constant across Sc

i . Thus, information held by only one
player helps nobody.

7. Variational Stability
This section digresses to inquire briefly about the robustness or stability of core
imputations (10). The question is: how do these items fare under perturbations of
endowments, payoffs and information structures?
The issue can be formalized as follows: Let �x∗n be a shadow price of a game

Γn := (πni , E
n
i , e

n
i )i∈I . Suppose the latter converges to Γ := (πi, Ei, ei)i∈I in a sense to

be made precise. Then, will each cluster point �x∗ of the sequence (�x∗n) be a shadow
price for Γ? Further, will uni := uni (�x

∗n)→ ui := ui(�x
∗)?
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Plainly, in asking these questions, there is no ambiguity or choice as to what
(eni , �x

∗n, uni ) → (ei, �x
∗, ui) should mean. Also, En

i → Ei amounts to have the matrix
representation of En

i converge in each entry to that of Ei. But some care is needed
in defining the appropriate notion of convergence πni → πi. We say that a sequence
of functions fn : X → R∪ {±∞} epi-converges to f : X → R∪ {±∞}, and write
fn →epi f, iff⎧⎨⎩ ∀x ∈ X ∀x

n → x it holds that lim inf fn(xn) ≥ f(x) and

∀x ∈ X ∃xn → x such that lim sup fn(xn) ≤ f(x).

Proposition 7.1. (Stability of shadow prices and imputations) Suppose
• (eni , En

i )→ (ei, Ei);
• ∀i ∈ I, ∀x∗i ∈ X∗,∀xn∗i → x∗i it holds that

lim inf π
n(∗)
i (xn∗i ) ≥ π

(∗)
i (x

∗
i ), and π

n(∗)
i (x∗i )→ π

(∗)
i (x

∗
i );

• the lower level set
n
π
(∗)
i ≤ r

o
is bounded for every r ∈ R and every i.

Let �x∗n be a shadow price of game Γn = (πni , E
n
i , e

n
i )i∈I . Then each cluster point

�x∗ of the sequence (�x∗n) is a shadow price of the unperturbed game Γ = (πi, Ei, ei)i∈I .
Moreover, uni = uni (�x

∗n)→ ui = ui(�x
∗) for each i.

Proof. Denote by Ln
i : X∗ × X∗→ X∗ the linear mapping defined by Ln

i (x
∗, x∗i ) :=

pni := x∗ + x∗i −Eix
∗
i . Clearly, L

n
i → Li pointwise for each i. Now define

Fn(�x∗) :=
X
i∈I

n
π
n(∗)
i ◦ Ln

i (x
∗, x∗i ) + hx∗, eni i

o
and

F (�x∗) :=
X
i∈I

n
π
(∗)
i ◦ Li(x

∗, x∗i ) + hx∗, eii
o
.

Observe that F n →epi F . Since �x∗n ∈ argminF n, the conclusion follows from Theo-
rem 7.33 in [34]. ¤

8. Non-Transferable Utility
So far arguments hinged upon utility being transferable. This section drops that
assumption at the cost of a less constructive approach to core solutions.
As hitherto, by a price system is understood a profile �x∗ := (x∗, x∗i , i ∈ I) such

that x∗ ∈ F(eI) and x∗i ∈ range(I−Ei). For any price system let

ci(�x
∗, xi) := hx∗, xii+ hx∗i , xi −Eixii

denote the cost incurred by player i when he purchases xi ∈ X. Note that ci(�x∗, ei) =
hx∗, eii . Recall that �x = (xi) is declared a feasible allocation iff

P
I xi =

P
I ei with
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πi(xi) > −∞ and xi = Eixi for each i. A price �x∗ together with a feasible allocation
�x constitutes a Walras equilibrium if for each i

ci(�x
∗, xi) ≤ hx∗, eii , and πi(x

0
i) > πi(xi)⇒ ci(�x

∗, x0i) > hx∗, eii .

The pair (�x∗, �x) is declared a quasi-equilibrium if for each i

ci(�x
∗, xi) = hx∗, eii , and πi(x

0
i) ≥ πi(xi)⇒ ci(�x

∗, x0i) ≥ hx∗, eii .

A feasible allocation �x is in the Core if no coalition C ⊆ I can find another alloca-
tion (x0i)i∈C, feasible for itself such that πi(x

0
i) ≥ πi(xi) ∀i ∈ C, with at least one

inequality strict.

Proposition 8.1. (Existence of quasi-equilibrium) Assume each πi is Lipschitz
continuous, concave on domπi := {xi : πi(xi) > −∞}, and that the latter set is non-
empty compact. Then there exists a quasi-equilibrium.

Proof. We follow [19]. Denote by ∆ the standard unit simplex in RI . That is,
δ = (δi) ∈ ∆ iff each δi ≥ 0 and

P
i∈I δi = 1. For any δ ∈ ∆ let sδ = (�x∗δ, �xδ) be a

min-max saddle-point of the Lagrangian

Lδ(�x∗, �x) :=
X
i∈I
{δiπi(xi)− ci(�x

∗, xi) + hx∗, eii} .

Then
δi
©
πi(x

δ
i )− πi(xi)

ª
≥ ci(�x

∗δ, xδi )− ci(�x
∗δ, xi) for each xi. (16)

Let Sδ equal the set of all saddle points sδ = (�x∗δ, �xδ) of Lδ, and posit for any (�x∗, �x),

D(�x∗, �x) := {δ ∈ ∆ : δi = 0 if ci(�x∗, xi) > ci(�x
∗, ei)} .

Since each πi is Lipschitz continuous on its domain, so are all functions �x = (xi) 7→P
i∈I δiπi(xi) on K := Πi∈Idomπi with a modulus that doesn’t depend on δ. Conse-

quently, the components of the multiplier vectors �x∗δ, having the nature of supergra-
dients

pδi := x∗δ + x∗δi −Eix
∗δ
i ∈ δi∂πi(x

δ
i ),

must be uniformly bounded. This entails that, modulo the transformation �x∗δ 7→
(pδi ) = (x

∗δ + x∗δi −Eix
∗δ
i ), we can restrict �x

∗δ to belong to a compact convex set K∗.
The correspondence (�x∗, �x, δ) Ã Sδ ×D(�x∗, �x) has a fixed point (�x∗, �x, δ) on the set
K∗ ×K ×∆.
We claim that ci(�x∗, xi) = ci(�x

∗, ei) for all i. Indeed, if some ci(�x∗, xi) > ci(�x
∗, ei),

then by construction δi = 0, and (16) would yield the contradiction ci(�x
∗, xi) ≤

ci(�x
∗, ei). Consequently, ci(�x∗, xi) ≤ ci(�x

∗, ei) for all i. But, if some such inequality
were strict, another contradiction comes up, namely:

P
i∈I ci(�x

∗, xi) <
P

i∈I ci(�x
∗, ei).

This proves the claim.
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Similarly, if πi(x0i) ≥ πi(xi) and ci(�x
∗, x0i) < ci(�x

∗, xi) for some Fi-measurable x0i,
then Lδ(�x∗, ·) cannot be maximal at �x. ¤

Proposition 8.2. (Walras equilibrium) Suppose each πi is lower semicontinu-
ous on its effective domain domπi and that this set is starshaped with respect to 0.
Then each quasi-equilibrium for which all h�x∗, eii > 0, is a Walras equilibrium.

Proof. If a quasi-equilibrium (�x∗, �x) is not a Walras equilibrium, then some agent
i has a Fi-measurable x0i such that πi(x

0
i) > πi(xi) and ci(�x

∗, x0i) = ci(�x
∗, ei). Since

domπi is starshaped with respect to 0, we have rx0i ∈ domπi for all r ∈ [0, 1] . By
the lower semicontinuity of πi on its effective domain, for r < 1 sufficiently close
to 1 we still get πi(rx0i) > πi(xi) but ci(�x∗, rx0i) < ci(�x

∗, ei) which contradicts the
quasi-equilibrium. ¤

Proposition 8.3. (Non-empty core) Under the hypotheses of Propositions 8.1-
2 there exists a core solution.

Proof. Pick any quasi-equilibrium (�x∗, �x). If �x is not in the core, some proper coali-
tion C has an alternative feasible allocation (x0i)i∈C satisfying πi(x

0
i) ≥ πi(xi) for all

i ∈ C, with at least one inequality is strict. By quasi-equilibrium ci(�x
∗, x0i) ≥ ci(�x

∗, ei)
for all i. ByWalras equilibrium, ci(�x∗, x0i) > ci(�x

∗, ei) for each strictly improving agent.
The upshot is the contradiction

P
i∈C ci(�x

∗, x0i) >
P

i∈C ci(�x
∗, ei). ¤

9. Some Examples
Since payment

ui = π
(∗)
i (x

∗ + x∗i −Eix
∗
i ) + hx∗, eii

is convex in �x∗, impacts of changes in measurability become interesting. For the
argument maintain ei but replace [x∗, x∗i − Eix

∗
i ,F(eI)] with a strictly ”finer” versionh

x̂∗, x̂∗i − Êix̂
∗
i ,F(êI)

i
, satisfying E [x̂∗ |F(eI)] = x∗ and

E
h
x̂∗i − Êix̂

∗
i

¯̄̄
F(eI)

i
= x∗i −Eix̂

∗
i .

Then, if π(∗)i is strictly convex, ûi := π
(∗)
i (x̂

∗+ x̂∗i −Ê∗i x̂∗i )+hx̂∗, eii > ui. In particular,
if player i is propertyless, perfectly informed, and has π

(∗)
i is strictly convex, he is

likely to benefit form a refinement of the field F(eI).
If ei changes, there is, of course, a material effect, but possibly also repercussions

via the information structure. To better isolate the latter, let i be a pure resource
owner. He has conjugate π(∗)i ≡ 0 and gets core payment ui = hx∗, eii . A pair y1, y2 of
real-valued random variables, defined on the same probability space, is said to exhibit
negative dependence if

Pr {y1 ≤ r1 |y2 ≤ r2} ≤ Pr {y1 ≤ r1} · Pr {y2 ≤ r2} for all real r1, r2,



Private Information, Transferable Utility, and the Core 18

with strict inequality for at least one choice r1, r2. With one good, X = R, and (13)
gives ui = Ex∗·Eei+cov(x∗, ei). Thanks to (14) we can posit that the resource price x∗
is a decreasing function of eI . So, if eI and ei are negatively dependent, cov(x∗, ei) > 0;
see [28] Proposition 16.9. Consequently, when eI and ei are anticorrelated, agent i
receives a bonus beyond the ”average payment” E(x∗) · E(ei).
It is noteworthy that the first fundamental theorem of welfare economics no longer

holds. The reason is that (rational expectation) Walras equilibria, in so far as ascrib-
ing value merely to commodities, need not belong to the private core. For example,
an agent i with ei = 0 and perfect information structure Fi = {{s}} gets production
profit π(∗)i (x

∗). So, provided π(∗)i (x
∗) > 0, he is left with some purchasing power. The

private core is apt to reward him for information that allow risk averters to write more
detailed and diversified contracts; see Example 9.6. In contrast, Walras equilibrium
gives him zero wealth, nullifies his consumption - irrespective of what information he
brings. It also deserves mention that Walras equilibrium may fail to exist in cases
where the core is non-empty:

Example 9.1. (An instance with no Walras equilibrium but non-empty
core) Let there be two goods g ∈ G = {g1, g2}, two players i ∈ I = {1, 2}, and two
equally likely states s ∈ S = {s1, s2} . Posit e1(s) = (1, 0), e2(s) = (1, 1) in each state
s to have constant endowments. Define

πi(xi) :=

½
Exi,gi(s) if xi(s) ∈ R2+ for all s,
−∞ otherwise.

Player i chooses xi = [xig(s)] ∈ RG×S and enjoys merely good gi. For any price
x∗ =

£
x∗g(s)

¤
∈ RG×S

+ we get

π
(∗)
i (x

∗) :=

½
0 if x∗gi(s) ≥ 1 for each s,
+∞ otherwise.

Let each Fi be generated by a perfect partition. Then every allocation that gives
player 1 a constant amount x1g1 ∈ [1, 2] of the first good - and player 2 the rest -
belongs to the core. The shadow price x∗ ≡ 1 supports that outcome. Consequently,
u1 = 1, u2 = 2 is a price-generated core imputation. There is however, no competitive
equilibrium. Indeed, an equilibrium price vector p = [pg(s)] must be constant across
S, but cannot have p1(s) ≡ p1 = 0, leaving agent 1 destitute. Further, if p1 > 0, then
agent 2 will demand more of good 2 than available. Changing F1 to {∅, S} would
not upset this conclusion. ¤

As is fairly well known, differential information may impede the writing of good
contracts:

Example 9.2. (A case for autarky) Accommodate two agents, one good, and
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three states as follows:

Agent i Pi state s : s1 s2 s3
1 {s1} , {s2, s3} endowment e1(s) : e1(s1) 0 0
2 {s2} , {s1, s3} endowment e2(s) : 0 e2(s2) 0

If e1(s1), e2(s2) > 0 are different, F(eI) is strictly finer than F1,F2. Also, when
e1(s1) = e2(s2) > 0, F(eI) = F({s1, s2} , {s3}) 6= Fi. Posit format (1) with
Πi(s, 0) = 0 and xi(s) ≥ 0, to get vi = Πi(si, ei(si))μ(si) for each i. Both players
get 0 is state s3. Therefore, by measurability x1(s2) = 0 and x2(s1) = 0, - to the effect
that no contract becomes possible apart from the autarkic one. While both parties
might want to write contracts in terms of s1, s2, either is unable to disentangle s3 as
a special contingency. ¤

Example 9.3. (Autarky or arbitrage) For players i ∈ {1, 2} let there be one
good (X = R) and posit πi(xi) :=

P
s∈S ai(s)xi(s) with ai ∈ Fi and xi ≥ 0. Suppose

partition P1 is strictly finer than P2 = {S} . Also suppose e1(s) = 0 for at least one
state. If

P
s∈S a1(s) ≤

P
s∈S a2(s), then autarky is optimal. In case the last inequal-

ity is strict, and the constraint x1 ≥ 0 is dropped, arbitrage obtains to the effect that
vI = +∞. ¤

Example 9.4. (On the advantage of being informed) Accommodated are
two agents, two goods, and two states as follows:

Agent i Pi state s : s1 s2
1 {s1} , {s2} endowment e1(s) : (1, 0) (0, 0)
2 {s1, s2} endowment e2(s) : (0, 2) (0, 2)

Note that F(eI) = F1 is strictly finer than F2. Let the two goods g ∈ {1, 2} be perfect
complements. Accordingly, posit

πi(xi) =
X
s

min
g

xig(s)μ(s)

with xi = [xig(s)] ≥ 0, to get vi = 0 for each i. Because player 1 can’t transfer any
positive amount of good 1 to player 2,

vI = max

(X
s

min
g

x1g(s)μ(s) : 0 ≤ x1(s) ≤ eI(s)

)
= μ(s1).

The shadow price x∗ on resources is the constant vector (1, 0). Here π(∗)1 (x
∗) = 0.

Thus the price-generated core payments are

u1 = hx∗, e1i = μ(s1) and u2 = hx∗, e2i = 0.
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When μ(s1) ≤ 0.5, player 1 has less attractive endowment and technology. But his
information advantage allows him to produce the cake - and have it all. ¤

Example 9.5. (On syndication) It is known that players who hold relatively
scarce resources may loose by forming a syndicate. It appears though, that price-
generated core solutions may mitigate this. To illustrate, accommodate 5 players,
only one good, but three states:

Agent i Pi state s : s1 s2 s3
i = 1, 2 {s1} , {s2, s3} endowment ei(s) : 1 0 0
i = 3, 4, 5 {s1} , {s2} , {s3} endowment ei(s) : 0 1/2 1

Let ext∆ denote the set of extreme points in the unit simplex ∆ ⊂ RS. For each
player i let

πi(xi) := min
s∈S

xi(s)μ(s) = min {hδ, xii : δ ∈ ext∆} = min h∆, xii , (17)

to have from (12) that π(∗)i is nil on ∆ and +∞ elsewhere.7 Like in [32] we get

vS =
1

3
min {|S ∩ {1, 2}| , |S ∩ {3, 4, 5}| /2}

The private core reduces to the single profile u = (0, 0, 1
6
, 1
6
, 1
6
). The resource price

x∗ = [0, 1, 0] ∈ F(eI), and ui = hx∗, eii .
If owners of the scarce resource eI(s2) form a syndicate {3, 4, 5} , the resulting core

has extreme points (u1, u2, u{3,4,5}) at the four vectors
¡
0, 0, 1

2

¢
,
¡
1
6
, 0, 1

3

¢
, (0, 1

6
, 1
3
), and

(1
6
, 1
6
, 1
6
). Thus, u{3,4,5} < 1/2 in all but one point. However, since syndication does not

affect x∗, for the price-generated selection we still get u{3,4,5}(x∗) =

x∗, e{3,4,5}

®
= 1/2.

This attests to the competitive nature of formula (10). ¤

Example 9.6. (On bringing useful information) First admit merely two players,
each with payoff (17) and imperfect information:

Player Partition ei(s1) ei(s2) ei(s3)
1 {s1, s2} , {s3} 1 1 0
2 {s1, s3} , {s2} 1 0 1

Then vi = 0, v{1,2} = 0. Now add a third, totally destitute, but perfectly informed
player:

Player Partition e3(s1) e3(s2) e3(s3)
3 {s1} , {s2} , {s3} 0 0 0

7The utility function (17) equals the Choquet expected utility
R
xidc when the normalized capacity

c is strictly positive only on the sure event S; see [10].



Private Information, Transferable Utility, and the Core 21

If his payoff also is of the form (17), vI = 1/3, p3 = x∗ ∈ ∆, and coalition {1, 2}
takes all. Player 3 then merely serves as a nexus for exchange. If however, π3(x3) :=
−1
2

P
s x

2
3(s)μ(s), we get π

(∗)
3 (x

∗) = 1
2

P
s x
∗2
3 (s)μ(s) > 0 for all x∗ 6= 0. Because

x∗(s2), x
∗(s3) > 0, players receive positive rewards u1 = hx∗, e1i, u2 = hx∗, e2i , u3 =

π
(∗)
3 (x

∗). The upshot is that players 1 and 2, while unable to tango, find it best to join
the grand coalition. This makes the utterly poor player a right honorable member.

10. Concluding Remarks
The core, a most popular solution concept, occupied center stage here. Moreover, a
price-generated selection was made.
Such selection points toward Walras equilibrium and various ways of shrinking the

core. Specifically, to have the core non-empty but small, one may invoke replicated
agents [9], nonatomic player sets [4], convexified preferences [17], or fuzzy coalitions
[23].
None of these remedies were used here. Instead we simply presumed that overall

payoff π was superdifferentiable - that is, concave - at the point of reference. More
global concavity could come about by aggregating representative agents as follows:
Let I := {1, ..., |I|} and introduce for each t ∈ (i− 1, i] , i ∈ I, a player with endow-
ment et = eidt, upper semicontinuous payoff πt = πi, and partition Pt = Pi. Thus
player i becomes a representative for a continuum of identical agents. Introduce next
the functions

π̂i(xi) := sup

½Z i

i−1
πt(xt)dt : xt = Eixt and

Z i

i−1
xtdt = xi

¾
.

The functions π̂i so constructed are all concave [37], and

sup

(Z |I|

0

πt(xt)dt : xt = Eixt for t ∈ (i− 1, i] , and
Z |I|

0

xtdt = eI

)

= sup

(X
i∈I

π̂i(xi) : xi = Eixi and
X
i∈I

xi = eI

)
.

The resulting, ”representative” triples (π̂i,Pi, ei), i ∈ I, generates a concave perturbed
function π̂ (11), and the preceding analysis applies.

Appendix

Collected here are some comments and results on shadow prices and optimal allocations.
Uniqueness of a shadow price amounts, of course, to have π(·, ·), as defined in (11),

differentiable at (0, 0). We shall not explore this issue.
A non-negative resource price x∗ results when the commodity space X is ordered, and at

least one agent has monotone payoff. Then, for material balance it suffices that
P

i∈I xi ≤
eI .
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Superdifferentiability of π (11) at (0, 0) does not demand that all underlying πi be
concave. If some πi isn’t concave, one may ”board up its holes” by employing instead the
smallest concave function π̂i ≥ πi. This done, each price regime �x∗ generates imputations
ûi(�x

∗) ≥ ui(�x
∗). And any shadow price �x∗ for the concavified game givesP

i∈I ûi(�x
∗) ≤ vI + d, andP

i∈C ûi(�x
∗) ≥ vC for all C ⊆ I.

The Shapley-Folkman theorem [12] asserts that concavification of payoffs affects at most
dimX + 2 agents. For more on this issue, and for estimates of the duality gap (or core
deficit) d, see [3], [15], [17], [36]. The upshot is that there is room for agents whose payoffs
are non-concave in regions of no economic interest. It is hard however, to accommodate
a player whose payoff is globally convex and finite-valued. Indeed, his presence suffices
to render the perturbed function π convex. When moreover, that π has a supergradient
somewhere, it must be affine. Definitely, such an instance has little of interest or realism.

As customary Lagrange multipliers relate to geometry, and they mirror the willingness
to pay. These features are recorded next. For the statement denote by f 0(y;∆y) the direc-
tional derivative of f : Y→ R ∪ {−∞} at y ∈ Y in the direction ∆y.

Proposition A.1. (Properties of shadow prices �x∗ = (x∗, x∗i , i ∈ I))
1) x∗ must be orthogonal on the affine subspace spanned by equation

P
i∈I xi = eI . More

precisely,

x∗,
P

i∈I xi − eI
®
= 0 for all

P
i∈I xi ∈ F(eI). Further, x∗i ⊥ ker(I− Ei) =

Fi and x∗i −Eix
∗
i ⊥ Fi in that hx∗i , xi − Eixii = hx∗i −Eix

∗
i , xii = 0 for all xi ∈ Fi.

2) x∗ is, or can be made, F(eI)-measurable, and one can posit x∗i ∈ range(I−Ei).
3) If function π (11) is differentiable at (0, 0) in the direction (∆e,∆x), then

π0(0, 0;∆e,∆x) ≤ inf
(
hx∗,∆ei+

X
i∈I
hx∗i ,∆xii : �x∗shadow price

)
.

In case π is concave and finite near (0, 0) equality holds here.

Proof. 1) just expresses standard complementarity. In 2) the first assertion derives from
the hypothesis that only F(eI)-measurable perturbations of the aggregate endowment were
accommodated. Plainly, the dual space to EF(eI)X comprises only functionals of corre-
sponding measurability. Because x∗i is nil on ker(I− Ei), it belongs to range(I− Ei)

∗ =
range(I−Ei).

In 3), by Theorem 4.2 each shadow price �x∗ is a supergradient of π at (0, 0). This
implies that

π(t∆e, t∆x)− π(0, 0) ≤ t

(
hx∗,∆ei+

X
i∈I
hx∗i ,∆xii

)
for any t > 0 and shadow price �x∗. Consequently,

π(t∆e, t∆x)− π(0, 0)

t
≤ inf

(
hx∗,∆ei+

X
i∈I
hx∗i ,∆xii : �x∗ shadow price

)
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and the first assertion om 3) follows. The last one there is a standard result of convex
analysis. ¤

For completeness, we record a primal existence result:

Proposition A.2. (Existence of optimal allocations) An optimal allocation �x = (xi)
exists, and the value vI is attained, in each the following three cases :
1) The upper level set(

(xi) :
X
i∈I

πi(xi) ≥ r, xi = Eixi,
X
i∈I

xi = eI

)
is non-empty bounded for at least one r ∈ R and closed for all r ∈ R.
2) Each πi is upper semicontinuous and concave on rangeEi, and the recession functions

0−πi(di) := inf
r>0

πi(xi + rdi)− πi(xi)

r
, πi(xi) finite,

satisfy X
i∈I
0−πi(di) ≥ 0 &

X
i∈I
0−πi(−di) < 0 implies

X
i∈I

di 6= 0.

3) Each πi is upper semicontinuous with a conjugate π
(∗)
i that is finite-valued continuous

at 0.

Proof. Statement 1) is standard. For 2) see Rockafellar (1970) Corollary 9.2.1. For
3) let

f∗(y∗) := inf
y
{hy∗, yi− f(y)}

denote the concave conjugate of a proper function f that maps a Hilbert space into
[−∞,+∞) . Then, on the same space, f̂ := (f∗)∗ equals the smallest concave upper
semicontinuous function ≥ f. The fact that πi∗ is finite-valued and continuous at 0 implies,
by the Moreau-Rockafellar theorem [7], that each upper level set {π̂i ≥ ri} is compact.
Now consider any maximizing, feasible sequence xk = (xki ). Since vI is finite there exist
real numbers ri such that xki ∈ {π̂i ≥ ri} for all k and i. Extract a convergent subsequence
to conclude. ¤
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