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Abstract. Exchange of risks is considered here as a transferable-
utility, cooperative game, featuring risk averse players. Like in competitive
equilibrium, a core solution is determined by shadow prices on state-dependent
claims. And like in finance, no risk can properly be priced only in terms of its
marginal distribution. Pricing rather depends on the pooled risk and on the
convolution of individual preferences. The paper elaborates on these features,
placing emphasis on the role of prices and incompleteness. Some novelties
come by bringing questions about existence, computation and uniqueness of
solutions to revolve around standard Lagrangian duality. Especially outlined is
how repeated bilateral trade may bring about a price-supported core allocation.

Keywords: cooperative game, transferable utility, core, risks, mutual insurance,
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1. Introduction
In a seminal paper Borch [4] considered risks as commodities and explored whether
such items might be priced merely in terms of their marginal distributions or mo-
ments. Not surprisingly, his findings were negative. There can hardly exist a linear
pricing regime of that sort. Further, even if existence were granted, price-taking
exchange would not generally yield Pareto efficient allocations. And absent such ef-
ficiency, competitive equilibrium cannot obtain. In conclusion, Borch suggested that
risk exchange had better be analyzed as a cooperative game.
This paper follows that suggestion. It extends work of Baton, Lemaire [2] and

adds to Wilson’s theory of syndicates [36]. Upon reconsidering Borch’s approach,
and a pioneering paper by Shapley and Shubik [33], a transferable-utility, cooperative
game comes naturally on stage. It features agents who find it worthwhile to pool their
risks [12], [13]. As customary, pooling smoothens nature’s vagaries. Lucky agents can
help unlucky ones; ups somewhere may mitigate downs elsewhere. In effect, when risk
aversion is commonplace, and information is symmetric, the advantages of pooling
suffice to render the core non-empty.
Thus, existence of a well defined solution is easily assured. Some queries remain

though. How is risk priced and shared? Put differently: how are premia and policies
determined? Precisely where and how does risk aversion become crucial? What are
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the prospects for efficient computation? Can repeated trade eventually bring about
stable solutions?
The paper addresses all these issues. In doing so, much guidance comes from per-

fect equilibrium in exchange economies. Like there, pricing must be linear, behavior
be price-taking, and any solution a member of the core. Unlike there, our solutions
relate to saddle values instead of fixed points. Such values derive from standard La-
grangian duality. In short, rather than viewing risk exchange as a competitive market
[6], [17], [19], [20], [26], [27], [31], it is seen here as a cooperative game with side pay-
ments [12], [13], [14], [30]. Provided payoffs be concave, such games are balanced - in
fact, totally balanced - hence have nonempty cores [33]. Not surprisingly, risk-sharing
then takes the form of mutual insurance.
Formally, the games at hand fit the frames of optimization and duality methods.

Those frames entail considerable advantages. First, an optimum is usually easier to
locate than a competitive equilibrium. Second, duality facilitates identification of
precisely where and how risk aversion affects play. Third, existence and uniqueness
hinge only upon absence of a duality gap and upon differentiability. Finally, risk trade
can be, and often is, driven by bilateral exchanges.1 Admittedly and regrettably, these
many advantages are not for free: they obtain here because utility is transferable.
Section 2 sets the stage for cooperative risk sharing, addressed in Section 3. Ap-

propriate sharing could come via a specific, price-generated core solution, as described
in Section 4. Existence of such solutions - and possible uniqueness - is the concern of
Section 5. Section 6 specializes to cases in which the parties agree on probabilities.
Sections 7, 8 model repeated exchanges of risks, and Section 9 concludes.

Notations are as follows. Given a nonempty set S and a vector space V , let V S

denote the family of all functions from S into V. For convenience, all vector spaces
considered here below are finite-dimensional Euclidean. If C ⊂ V is nonempty closed
convex, and v ∈ V, the orthogonal projection PCv denotes the point in C closest to v.
Let the player set I have finite cardinality denoted |I|. When (vi) ∈ V I , it is often
convenient to write �v in lieu of (vi) and let vI :=

P
i∈I v

i. The dual space V ∗ com-
prises all continuous linear functions v∗ : V → R. A function f : V → R∪ {−∞} is
called proper if domf := {v ∈ V : f(v) > −∞} is nonempty. Such a function admits
a conjugate f∗ : V ∗ → R∪ {+∞} defined by f∗(v∗) := sup {f(v)− v∗(v) : v ∈ V } .2

2. The Setting
This section assembles pieces and parcels of the situation under scrutiny.
A stochastic, two-period economy is considered. Assets are traded right

now, under uncertainty, and they yield returns next period. Ex ante, traders cannot
precisely predict what state s ∈ S will materialize next period. Ex post they all agree

1Bilateral transactions could proceed by means of predesigned contracts, such instruments then
being insurance treaties.

2Replacing f by −f and v∗ by −v∗ gives the standard Fenchel conjugate [32]. Any proper, upper
semicontinuous, concave f is recovered via f(v) = inf {f∗(v∗) + v∗(v) : v∗ ∈ V ∗} .
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on which state has happened. The state space S is an exhaustive, yet minimal list
of mutually exclusive, economically relevant scenarios. For simplicity, take S to be
finite.3

Players constitute a fixed, finite set I. Agent i ∈ I already owns a risk ȳi = (ȳis)
belonging to a linear subspace Y of Y := ES. The component ȳis of his endowment is
a commodity bundle in a finite-dimensional real Euclidean space E. That component
denotes his claim, indemnity or gross dividend in state s.4 For reasons explained
later, the players must contend with choices in Y ⊂ Y. By way of example, while Y
comprises all possible risks, Y could be spanned by the prescribed risks ȳi, i ∈ I.5

Preferences are represented by payoff functions πi : Y → R∪ {−∞}, satisfying
πi(ȳi) > −∞. The objective πi(·) of player i might already be a reduced function.
For example, if prior to asset trading, he must choose xi from some decision set Xi,
with objective Πi : Xi → R and subject to ci(xi) ≥ yi ∈ Y, then posit

πi(yi) := sup
©
Πi(xi) : xi ∈ X i and ci(xi) ≥ yi

ª
. (1)

Format (1) brings out two features. First, by tacit convention, πi(yi) = −∞ iff
{xi ∈ X i : ci(xi) ≥ yi} is empty. More generally, the extreme value −∞ serves to
signal infeasibility. It accounts for restrictions and saves us explicit, repeated mention
of these if any. Second, one cannot straightforwardly presume that payoff (1) be
differentiable. Therefore, throughout the paper non-smooth payoffs are tolerated.
Transferable utility is presumed. In speaking rather of payoff, that entity is

tacitly seen as cardinal, divisible, and transferable among agents. This assumption
may be justified in two settings. For one, agent i could be a producer who obtains
monetary revenues πi(yi) from factor profile yi ∈ Y. Alternatively, he might be
a consumer who derives quasi-linear utility πi(yi) = yi0 + πi−0(y

i
−0) from a profile

yi = (yi0,y
i
−0) that has the amount y

i
0 ∈ R of ”money” in some designated 0-th

coordinate. The residual function πi−0(·) then reports the reservation price πi−0(yi−0)
that i would assign to the accompanying commodity bundle yi−0.

3. Cooperative Risk Sharing
Any coalition or consortium C ⊆ I of agents could aggregate their risks into ȳC :=P

i∈C ȳ
i and thereafter make transfers among themselves.6 Motivation for such an

3The subsequent arguments can accommodate an infinite measure space S together with the
Hilbert space Y = L2(S,E) of square-integrable profiles s 7→ ys ∈ E, mapping S into a Euclidean
space E.

4That state-contingent claim could quite simply come as a financial credit or debit. Then E = R.
Alternatively, if real assets generate various goods, mentioned on a finite list G, then E = RG. More
generally, any topological vector space E is applicable provided it be locally convex and Hausdorff.
One can construe ȳi as a consumption profile to which agent i is entitled. This viewpoint fits to
finance, and it opens up for inclusion of many time periods.

5In general, one would require that Y be closed and complementable [25]. Given our finite-
dimensional setting, Y is automatically so. The particular instance Y = Y is referred to as complete.

6Nothing precludes that i ∈ I already is a syndicate [36] or cartel, formed by agents of the same
type. For such formation see [21] and [22].
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enterprise might stem from C contemplating potential payoff

πC(ȳC) := sup

(X
i∈C

πi(yi) :
X
i∈C

yi = ȳC with all yi ∈ Y

)
. (2)

Plainly, πC(ȳC) ≥
P

i∈C π
i(ȳi) > −∞. A bliss value πC(ȳC) = +∞ makes no sense.

So, assume πC(ȳC) finite for all C ⊆ I. In particular, agent i obtains ”autarky
payoff” π{i}(ȳ{i}) = πi(ȳi) if he opts to avoid exchanges.
(2) is called a sup-convolution. It models pooling and friction-free redistribution

of perfectly divisible risks.7 Clearly, incentives for redistribution stem from comple-
mentarities or substitutions in the usage of technologies and endowments.
To incite everybody to join the grand coalition C = I, payoffs must be shared

somehow. And sharing, for its viability, had better be efficient, incentive compatible,
and ”equitable”. Any core imputation fills the bill. That solution concept, most pop-
ular in cooperative game theory, amounts here to specify a monetary compensation
schedule which supports Pareto efficiency and no blocking:

Definition 1. (Core solutions) A profile c = (ci) ∈ RI of side payments belongs
to the core iff it entails

Pareto efficiency:
P

i∈I c
i = πI(ȳI) and

no blocking:
P

i∈C ci ≥ πC(ȳC) ∀C ⊂ I.

¾
(3)

Pareto efficiency requires that total payoff be maximal and fully shared. No blocking
means that each coalition receives, in sum, at least as much as when going alone. Is
such a scheme of side payments available?8 More precisely: can a core solution be
exhibited, computed, interpreted and implemented? Yes, as seen next, if agents are
risk averse, indeed it can!

4. Price-generated Core Solution
The subsequent arguments for viable collaboration proceed in terms of ”price regimes”
and standard Lagrangians. To introduce and conveniently handle these objects, equip
the risk space Y = ES with a fixed inner product denoted by juxtaposition y∗y.
Modulo that product, Y permits a decomposition Y ⊕N into the direct sum of two
orthogonal spaces, N being the normal complement to the given closed subspace Y.
This means that any y ∈ Y comes as a unique sum y = y + n with y ∈ Y, n ∈ N,
and yn = 0.

7For indivisible goods g ∈ G, see [34] and references therein. Then, if all risks come in integer
amounts, one would use commodity space E = ZG where Z := {0,±1,±2, ...} . Applying the discrete
convex analysis - and notably the Fenchel-type duality theorem 5.2 in [28] - and presuming all payoff
functions πi : Y = ZG×S → R∪ {−∞} M-concave, it holds an analog of Theorem 1 below.

8It is known from [33] that concave payoffs πi and finite values πC(ȳC) suffice for the core to
be nonempty. A fortiori, the game having characteristic function S ⊇ C 7→ πC(ȳC) ∈ R then
becomes totally balanced. More is demanded here though: Some ”specific” core element should
”constructively” be brought to the fore; mere existence is not quite satisfactory.
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Correspondingly, decompose the dual space Y∗, which comprises all continuous
linear functionals on y∗ : Y→ R, into the direct sum Y ∗ ⊕ N∗ of Y ∗ := N⊥ and
N∗ := Y ⊥; see [25]. Then, any y∗ ∈ Y∗ equals a unique sum y∗ = y∗ + n∗ with
y∗ ∈ Y ∗, n∗ ∈ N∗, and consequently, when y = y+n, we get y∗y = (y∗+n∗)(y+n) =
y∗y + n∗n.
Each payoff function πi : Y → R∪ {−∞} has a conjugate πi∗ : Y∗ → R∪ {+∞} .

The latter, which records economic rent or consumer surplus, is defined by

πi∗(y∗) := sup
©
πi(y)− y∗y : y ∈ Y

ª
. (4)

The function y∗ 7→ πi∗(y∗) so constructed is lower semicontinuous and convex. For
interpretation, regard i as a producer who pays y∗y for factor input y, gets payoff
πi(y), and collects profit πi∗(y∗). After these preparations associate the standard
Lagrangian

LC(−→y ,−→y ∗) :=
X
i∈C

©
πi(yi + ni) + y∗(ȳi − yi)− ni∗ni

ª
(5)

to problem (2). Here the grand vector −→y := (yi) has components yi = yi + ni ∈
Y, called primal variables, construed as inputs or consumption bundles. Similarly,
−→y ∗ := (yi∗) has components yi∗ = y∗+ni∗ ∈ Y∗, called dual variables, seen as prices.
As expected from a Lagrangian, sup−→y inf−→y ∗ L

C(−→y ,−→y ∗) = πC(ȳC).
Problem (2) motivates formula (5) as follows: First, relax the balance requirementP

i∈C y
i = ȳC of coalition C by paying

P
i∈C y

∗(yi − ȳi) for a deviation yC − ȳC .
Second, relax the restriction yi ∈ Y by paying ni∗ni for a normal component ni ∈ N.
It follows from (4) and (5) that

sup
−→y

LC(−→y ,−→y ∗) =
X
i∈C

©
πi∗(yi∗) + y∗ȳi

ª
.

Definition 2. (Shadow prices) −→y ∗ := (yi∗), with yi∗ = y∗ + ni∗ ∈ Y∗, is declared a
shadow price regime iff

πI(ȳI) ≥
X
i∈I

©
πi∗(y∗ + ni∗) + y∗ȳi

ª
. (6)

Because the gap X
i∈I

©
πi∗(y∗ + ni∗) + y∗ȳi

ª
− πI(ȳI)

always is nonnegative, a shadow price −→y ∗ := (yi∗) = (y∗ + ni∗) prevails iff the said
gap is nil.

Theorem 1. (Shadow prices on risks generate core solutions) For any shadow price
the monetary payment profile c = (ci), with

ci := πi∗(y∗ + ni∗) + y∗ȳi, (7)
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belongs to the core. That is, it satisfies (3).

Proof. For any coalition C ⊆ I and price regime −→y ∗ with yi∗ = y∗ + ni∗, one
hasX

i∈C

©
πi∗(y∗ + ni∗) + y∗ȳi

ª
≥ inf−→y ∗ sup−→y

LC(−→y ,−→y ∗) ≥ sup
−→y
inf−→y ∗

LC(−→y ,−→y ∗) = πC(ȳC).

(8)
Thus, invoking definition (7), the ”no blocking constraints” in (3) are all easily sat-
isfied. Clearly, this weak duality result tells that access to a competitive market can
harm no coalition. But Pareto efficiency follows straightforwardly as well because,
using shadow prices, the market clears. To wit,

πI(ȳI) ≥
X
i∈I

©
πi∗(y∗ + ni∗) + y∗ȳi

ª
=
X
i∈I

ci ≥ πI(ȳI).

The left-most inequality in the last string was assumed in (6), and the extreme right
one derives for the instance C = I from (8). ¤

Theorem 1 inspires the hope that a core solution might be found - and implemented
- in terms of a linear price regime. That regime depends on the entire preference
profile and the aggregate risk.
Theorem 1 also brings out that existence of equilibrium prices can be discussed

separately from that of allocations.9 Put differently: existence of price-supported core
imputations can be argued without reference to how risks are shared.
As in Negishi’s approach to competitive equilibrium, individual preferences are

aggregated into those of a single representative figure, here called the convoluted
agent. As in finance, the premium alias the price of any insurance treaty is largely
affected by how its indemnity co-varies with the aggregate risk.
The competitive, decentralized nature of shadow prices regime is speaking. If

charged payment y∗(yi − ȳi) + ni∗ni for replacing his endowment ȳi + 0 by yi + ni,
agent i would make a choice that perfectly fits problem (2) for the grand coalition
C = I. Note that formula (7) pays him in two capacities: first, profit πi∗(y∗+ ni∗) as
a ”producer” and second, reimbursement y∗ȳi as a ”claim-holder.”

5. Existence and Uniqueness

Theorem 1 tells that a shadow price regime obtains iff it realizes the saddle value
min supLI = sup inf LI . Put differently: what comes to the fore is a lop-sided min-
sup result. But, as is well known, existence of saddle values cannot generally be guar-
anteed unless some compactness, continuity and convexity conditions are in vigor.
Ignoring compactness for a while, we are, as usual in microeconomics, left with con-
cerns about continuity and convexity of preferences.

9Fenchel’s duality theorem [5] facilitates that divorce. That is, dual problem attainment can
discussed separately from primal attainment.
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To appreciate these properties, and to understand the nature of shadow prices,
consider a convoluted agent, who enjoys payoff

πI(yI , �n) := sup

(X
i∈I

πi(yi + ni) :
X
i∈I

yi = yI with all yi ∈ Y

)
. (9)

Two arguments affect this fictive fellow: first, an aggregate risk yI ∈ Y and second,
a profile �n = (ni) of vectors ni ∈ N, each normal to Y . Clearly, πI(yI , �n) equals
the total payoff to grand coalition I after replacing the prescribed ȳI by yI ∈ Y and
giving each agent i a normal component ni ∈ N.With minor abuse of notation, note
that πI(ȳI , 0) = πI(ȳI) where the right hand value was defined already in (2). More
importantly, note that if all πi are concave, then so is πI(·, ·). In other words: if all
agents are risk averse, so is the convoluted agent as well.
Returning now to the issue of compactness, if

πI(·, ·) is finite-valued in a neighborhood of (ȳI , 0) ∈ Y ×N I , (10)

and concave, then that concern is cared for. (10) says that if local perturbations
of total endowments were possible around the reference point (ȳI , 0), the aggregate
payoff to the grand coalition would remain bounded.10

(10) yields existence and a ”neoclassic”, marginalistic interpretation of shadow
prices. For the statement recall that y∗ ∈ Y∗ is called a supergradient of a proper
function f : Y→ R∪ {−∞} at the point y, and we write y∗ ∈ ∂f(y), iff f(y0) ≤
f(y)+y∗(y0−y) for all y0 ∈ Y. Also recall that provided f be concave and bounded
below near y, then its superdifferential ∂f(y) is nonempty; see [24], [32]. In essence,
that fact implies:

Theorem 2. (Existence and characterization of shadow price regimes)
• Suppose the function πI(·, ·) is concave. Then, under qualification (10) there ex-
ists a supergradient (y∗, �n∗) ∈ ∂πI(ȳI , 0), and it constitutes a shadow price regime
−→y = (yi∗) with yi∗ = y∗ + ni∗.
• Conversely, any such shadow price regime generates a supergradient (y∗, �n∗) ∈
∂πI(ȳI , 0).
• In sum, a shadow price regime, and a corresponding core solution (7), can be defined
iff πI(·, ·) is superdifferentiable at (ȳI , 0).
• If −→y ∗ = (yi∗) with yi∗ = y∗ + ni∗ is a shadow price regime, and −→y = (yi) solves
problem (2) for the grand coalition, then it holds for each i that

y∗ + ni∗ ∈ ∂πi(yi). (11)

10(10) ensures that the pricing problem becomes inf-compact whence has a solution. Thus, while
agents’ choice sets may be unbounded - as in [19], [17], [27] and [31] - (10) eliminates problems
caused by long or short positions.
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Proof. As pointed out already, under qualification (10) the concave function πI(·, ·),
being finite-valued near (ȳI , 0), has a supergradient (y∗, �n∗) there. Further, (y∗, �n∗) ∈
∂πI(ȳI , 0) iff

πI(yI , �n) + y∗(ȳI − yI)− �n∗�n ≤ πI(ȳI , 0) for all (yI , �n) ∈ Y ×N I .

By (9) this holds iffX
i∈I

©
πi(yi + ni) + y∗(ȳi − yi)− ni∗ni

ª
≤ πI(ȳI , 0) for all (yi, ni) ∈ Y ×N. (12)

This, in turn, amounts to have (6). Finally, for any dual optimal (y∗, �n∗), take, on
the left hand side of (12), the (partial) superdifferential with respect to yi = yi + ni

at any primal optimal yi. This yields (11). ¤

Concavity alias risk aversion played a crucial role in Theorem 2. To reduce that
role to a minimum consider the smallest concave function π̂I(·, ·) ≥ πI(·, ·). In tems
of π̂I two weaker hypotheses suffice for existence of a shadow price: first, π̂I(·, ·)
should be superdifferentiable at (ȳI , 0); second, one should have π̂I(ȳI , 0) = πI(ȳI , 0).
Thus risk aversion is really not needed, neither in small nor in large. Rather, what

imports is concavity in the aggregate - and only with respect to the reference point
(ȳI , 0).
Inclusions (11) tell that all agents use the same y∗ ∈ Y ∗ to price choices within

the ”market space” Y.11 That is, up to idiosyncratic normal components ni∗, i ∈ I,
the players agree on one price in Y . In the market game [33] restricted to Y, any
feasible exchange deemed desirable and affordable, will be made. The valuations of an
infeasible y ∈ YÂY, one whose normal component n does not vanish, will probably
vary across agents.
If potential exchanges constitute a complete space, that is, if Y = Y, then

clearly, all ni∗ = 0, and things become simpler. In that instance y∗ is briefly named
a shadow price, and it holds:

Corollary. (Shadow prices under completeness) Suppose Y = Y.
• If the function πI(·) defined in (2) is finite-valued in a neighborhood of ȳI and
concave, then it is superdifferentiable at ȳI , and any supergradient y∗ ∈ ∂πI(ȳI) con-
stitutes a shadow price with all ni∗ = 0.
• Conversely, any shadow price y∗ of that sort must satisfy y∗ ∈ ∂πI(ȳI).
• In sum, a shadow price y∗ - and a corresponding core solution (7) - can be defined
with all ni∗ = 0 iff πI(·) is superdifferentiable at ȳI .
• If y∗ is a shadow price, and (yi) solves problem (2) for the grand coalition, then
for each i

y∗ ∈ ∂πi(yi). ¤
11Smooth versions of (11) are prominent in models of incomplete financial markets; see [26].
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When merely one good comes into consideration, that is, when E = R, Wilson [36]
lists several explicit solutions.
An extremal convolution like (2) has regularizing effects [7], [14]. In particular,

this bears on possible uniqueness of shadow prices as stated next.

Proposition 1. (Unique shadow price) Suppose the space is complete, payoffs πi(·)
are concave, and the optimal value πI(ȳI) is attained. Then, if at least one player
i has πi(·) strictly concave and differentiable, the convoluted payoff function πI(·)
becomes differentiable at ȳI , and the shadow price is unique.

Proof. The distinguished agent i has a unique yi at which optimum is attained.
By the last bullet here above y∗ = ∇πi(yi). ¤

It is often natural to assume πI monotone increasing in each component of yI . Then
y∗ ≥ 0. For illustration of Theorems 1 &2, and to expand instance (1), suppose

πi(yi) := sup
©
Πi(xi,yi) : xi ∈ X i

ª
, (13)

featuring a bivariate proper, concave function Πi(·, ·) defined over a Euclidean vector
space X i×Y. Instance (1) obtains by setting Πi(xi,yi) := Πi(xi) when ci(xi) ≥ yi,
and −∞ otherwise. Coalition C could then achieve

πC(ȳC) := sup

(X
i∈C

Πi(xi, yi) :
X
i∈C

yi = ȳC , xi ∈ X i, yi ∈ Y

)
.

Let here LC :=
P

i∈C [Π
i(xi, yi + ni) + y∗(ȳi − yi)− ni∗ni] and

Πi∗(x∗,y∗) := sup
©
Πi(xi,yi)− x∗xi − y∗yi

ª
.

Note that
sup

−−−−−−→
(xi,yi,ni)

LC =
X
i∈C

©
Πi∗(0, y∗ + ni∗) + y∗ȳi

ª
.

Verbatim imitation of the proof of Theorem 1 yields:

Proposition 2. (Core solutions in terms of primitive payoff functions) Given re-
duced payoff functions like (13), suppose

πI(ȳI) ≥
X
i∈I

©
Πi∗(0, y∗ + ni∗) + y∗ȳi

ª
for some price regime −→y ∗ = (yi∗) with yi∗ = y∗ + ni∗. Then, by offering agent i
compensation ci := Πi∗(0, y∗ + ni∗) + y∗ȳi, we get a core solution. ¤

While Theorem 2 addresses existence of shadow prices, separate arguments are re-
quired for the availability of equilibrium allocations. Proposition 4 in [12] yields:
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Proposition 3. (Existence of equilibrium allocations) Suppose the constrained,
upper-level set(

�y = (yi) ∈ Y I :
X
i∈I

yi ∈ K,
X
i∈I

πi(yi) ≥ r

)
is compact (14)

for every compact K ⊂ Y and every real r. Then πI becomes upper semicontinu-
ous proper, and the value πI(ȳI) will be attained by some feasible allocation (yi). If
moreover, each πi is lower semicontinuous at the corresponding yi, then πI becomes
continuous at ȳI . ¤

The hypotheses in Proposition 3 serve to compactify the attractive part of the aggre-
gate decision set. A similar proposition allows relaxed profiles −→y = (yi) ∈ YI . The
continuity of πI at ȳI ensures its superdifferentiability at that point. Thus (14) re-
lates to (10). Broadly, the feasible allocations that provide sufficient aggregate payoff,
must be bounded.

6. Common Predictions and Separable Preferences
Assume henceforth that everybody holds the same opinion about the likelihood of
various outcomes.12 Formally, there is a common strictly positive probability distri-
bution p = (ps) over S. Each linear functional y∗ on Y can now be represented in
terms of the statistically motivated, probabilistic inner product y∗y :=

P
s∈S psy

∗
sys

with y∗s , ys ∈ E. Such representation is particularly useful for the important instance
where preferences are of von Neumann-Morgenstern separable type. Ex ante payoff

πi(yi) := Eπi•(y
i
•) =

X
s∈S

psπ
i
s(y

i
s) (15)

then equals the expected value of its ex post state-dependent counterpart, and (11)
amounts to have y∗s + ni∗s ∈ ∂πis(y

i
s) for each s. Given separable format (15), if the

members of coalition C pool their claims ex post, after s has been unveiled, having
then available the aggregate ȳCs :=

P
i∈C ȳ

i
s, it might, in that circumstance, ”shoot

for” over-all contingent payoff

πCs (ȳ
C
s ) := sup

(X
i∈C

πis(y
i
s) :

X
i∈C

yis = ȳCs , y
i
s ∈ E

)
. (16)

Thus, one may speak about contingent, state-dependent cooperation, implemented
after s has become manifest. Like before, a compensation scheme cs = (cis) ∈ RI

12Admittedly, it is somewhat unsatisfactory that information is presumed symmetric. As known
from [37], [23] and other studies, asymmetries can eliminate good opportunities for mutual insurance.
Also, communication raises the prospect of additional elimination.
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belongs to the core of the cooperative game that prevails in state s iff

Pareto efficiency obtains:
P

i∈I c
i
s = πIs(ȳ

I
s), and

there is no blocking:
P

i∈C c
i
s ≥ πCs (ȳ

C
s ) ∀C ⊂ I.

Also, like before, if y∗s ∈ E∗ is a Lagrange multiplier of problem (16) for C = I, then
by providing compensation

cis := πi∗s (y
∗
s) + y∗s ȳ

i
s

to agent i, one obtains a core solution ex post in state s.
Opportunistic behavior of this sort - where agents prefer to wait and see, where

different realizations are treated apart from each other - will not generally fit with (3).
The simple reason is, of course, that in passing from (3) to (16) all constraints yi ∈ Y
were dropped or ignored. When relieved of his constraint, agent i receives expected
compensation c̄i :=

P
s∈S psc

i
s. To emphasize the role of Y in (2) let π

I(ȳI , Y ) denote
the optimal value for the grand coalition C = I there. Clearly, when Y ⊂ Y, it holds
that X

i∈I
c̄i = πI(ȳI ,Y) ≥ πI(ȳI , Y ) =

X
i∈I

ci.

If Y ( Y, the last inequality tends to be strict. Equality holds however, under com-
pleteness:

Theorem 3. (Completeness of the market and time consistency of cooperation)
Suppose claims can be traded in a complete space; that is, suppose Y = Y. Then any
shadow price y∗ = (y∗s) supports an over-all ex ante core solution ci := πi∗(y∗) + y∗ȳi

as well as an ex post, contingent core solution cis := πi∗s (y
∗
s) + y∗s ȳ

i
s in each state s. It

holds that ci =
P

s∈S psc
i
s. And it does not matter whether these cooperative treaties

were written before or after the state has been unveiled. ¤

Under completeness and separable preferences (15), if for each state s the convo-
luted payoff πIs(·), as defined in (16), is differentiable at ȳIs , then the price (insurance
premium) of y equals ∇πIs(ȳIs)ys ex post and

P
s∈S ps∇πIs(ȳIs)ys ex ante.

It appears that some diversity in probability assessments may be accommodated.
Specifically, if agent i believes state s will materialize with probability f isps, simply
replace πis by f isπ

i
s and proceed with the same analysis as here above. In other

words, the assessments could all be absolutely continuous with respect to a common
probability measure (ps).

7. Bilateral Exchange of Risks
Construction (2) invites some pressing questions. Namely, when C = I, who un-
dertakes the optimization and how? Further, since an efficient solution seemingly
requires revelation of true preferences, can it be implemented? May parties fall vic-
tim to strategic communication?
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To separate these issues consider first how a center or consultant, who holds
all necessary information, might take up the computational task. For that purpose
suppose problem (2) admits an optimal solution when C = I. Also, for simplicity,
suppose hereafter that each payoff function πi be finite-valued and concave across
the entire space Y.13 Thus, there are no implicit restrictions besides the explicit
constraint yi ∈ Y.Moreover, again for simplicity, suppose all superdifferentials ∂πiare
uniformly bounded.14 Let {γk} be a numerical sequence of so-called step sizes, selected
a priori subject to

γk > 0,
∞X
k=0

γk = +∞, and γk → 0. (17)

The computing center, or the said consultant, could proceed by iterated gradient
projection, described as follows:
• Start at stage k := 0 with step size γ := γ0 and choices yi ∈ Y, i ∈ I, determined
by history, guesswork or accident. It should hold though, that

P
i∈I y

i = ȳI .
• Select for each agent i a marginal payoff vector M i ∈ ∂πi(yi) ⊂ Y. Project these
onto the subspace Y to have mi := PYM

i with mean m̄ :=
P

i∈I m
i/ |I| .

• Update choices by the rule

yi ← yi + γ(mi − m̄) for all i. (18)

• Move to the next stage k ← k + 1 with new step size γ ← γk.
• Continue to Select until convergence. ¤

Proposition 4. (Coordinated convergence to the core) The described procedure
of iterated gradient projection converges to an optimal solution of problem (2) for the
grand coalition. Moreover, such a solution generates a shadow price regime.

Proof. First, consider the problem to find the best approximate of any given vector
(ŷi) =(ŷi + n̂i) ∈ YI in the affine subspace Y :=

©
(yi) ∈ Y I :

P
i∈I y

i = ȳI
ª
. For-

mally, this amounts to minimize
P

i∈I kyi − ŷik
2 s.t.

P
i∈I y

i = ȳI and all yi ∈ Y.

Since kyi − ŷik2 = kyi − ŷik2 + kn̂ik2 , one gets yi = ŷi + (ȳI − ŷI)/ |I|.
Given now yi ∈ Y for all i ∈ I, and also

P
i∈I y

i = ȳI , when taking the projection

PY of the grand vector
−→y + γ

−→
M: = [yi + γM i]i∈I ∈ YI onto Y, we get, by the above

observation, as closest approximation the point [yi + γ(mi − m̄)]i∈I . Thus, iteration

13When πi is bounded above, this holds if πi is replaced by

π̂i(y) := sup
©
πi(y0)− Ci(y − y0) : y0 ∈ Y

ª
,

using a function Ci : Y 7→ R+ which is convex and vanishes only at the origin. In particular, when
Ci = k·k2 , the so regularized function π̂i becomes smooth as well; see [7] Thm. 5.1.
14This holds if there exist r, ρ > 0 and an optimal solution (ŷi) to (2) with C = I, such thatP
i∈I
°°ŷi − yi

°° ≥ r implies
P

i∈I
©
πi(ŷi)− πi(yi)

ª
≥ ρ. In particular, some degree of strong con-

cavity in all objectives would suffice.
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(18) is nothing else than the method of (super-)gradient projection

−→y ← PY
h−→y + γ

−→
M
i

applied to problem (2) with C = I. Because that problem is concave, and because
by assumption it admits an optimal solution, convergence follows from received the-
ory; see [10]. After convergence to an optimal profile −→y = (yi), pick a common
y∗ ∈ ∩i∈IPY [∂π

i(yi)] , and for each agent i, a normal ni∗ ∈ ∂πi(yi) − y∗. Then (11)
holds. In particular, if each payoff πi(·) is differentiable in classical Gâteaux sense at
yi, it holds that y∗ = PY [∂π

i(yi)] and ni∗ = ∂πi(yi)− y∗. ¤

V. Pareto regarded economic markets as decentralized computing machines. Sub-
scribing here to his view, the centralized algorithm, just described, had better be
replaced by a non-coordinated process driven by the agents themselves. The one
proposed next is of that preferred sort. It purports to reflect repeated bilateral
exchanges of risk, proceeding as follows:

• Start at stage k := 0 with step size γ := γ0 and choices yi ∈ Y, i ∈ I, deter-
mined by history or accident such that

P
i∈I y

i = ȳI .

• Choose two agents i, i0 ∈ I independently of past choices and according to a uniform
probability. Pick mi ∈ PY ∂π

i(yi), mi0 ∈ PY ∂π
i0(yi

0
).

• Update the choices of only these two agents by

yi ← yi + γ(mi −mi0) and yi
0 ← yi

0
+ γ(mi0 −mi). (19)

• Move to the next stage k ← k + 1 with new step size γ ← γk.
• Continue to Choose two agents until convergence. ¤

Theorem 4. (Convergence of decentralized, bilateral exchanges) Suppose repeated
bilateral exchanges of risks produces uniformly bounded sequences of variates yi, mi.
Besides (17) suppose

P
γ2k < +∞. Then the sequence of yi converges to an optimal

solution of problem (2) for the grand coalition. Moreover, such a solution generates
a shadow price regime.

Proof. If merely two agents are around, the setting is quite as in Proposition 4.
So, with no loss of generality, posit I = {1, ..., |I|} with |I| > 2. Let the random
event space Ω consist of all ordered pairs (i, i0) ∈ I × I. Outcome ω = (i, i0) means
that players i, i

0 ∈ I are sampled (with replacement) and offered the opportunity to
trade risks between themselves. Quite naturally, such opportunities should emerge
in egalitarian manner. Accordingly, endow Ω with the uniform probability measure;
that is, each ω is selected with probability 1/ |I|2 .
Take expectation with respect to ω in yi+γ(mi−mi0) to get yi+γ(mi− m̄)/ |I| .

Thus, in expectation (19) amounts to a scaled down version of (18). Since the latter
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converges, so does the bilateral process by Prop. 2.1 in [3]. ¤

It deserves emphasis that players may very well be scantly informed. Trade can,
in principle, be postponed until shadow prices prevail. If so, processes (18) and (19)
both follow the long tradition of Walrasian tâtonnement [11], [29]. They differ how-
ever, from most received versions - and from Wilson’s budgetary adjustment [35] -
in dispensing with explicit listing of prices. For greater realism transactions may
happen in the interim. Then, some trades, made before prices settle at equilibrium
levels, may be regretted by some party later on. Other trades may have turned out
favorable when viewed in hindsight.

8. Trade of Insurance Treaties
It is time at last, to justify why only risks residing in a subspace Y ⊂ Y are traded.
Clearly, if any exchange in Y were possible, the setting would be that of a barter
economy.
For a realistic optic, one that fits insurance and finance, suppose exchange is me-

diated only via a finite set J of so-called instruments, briefly referred to as insurance
treaties. Each j ∈ J is a contract that promises to pay its holder a specified indem-
nity, coverage or gross dividend dsj ∈ E if state s ∈ S comes about. Suppose treaties
are perfectly divisible and traded without quantity restrictions and transaction costs.
As before, there are only two time periods: now and later. This means that all

treaties expire after one appropriately defined time-step. By a portfolio is under-
stood a vector x = (xj) ∈ X := RJ , saying precisely how much is held of various
policies/contracts. Note that portfolio x yields indemnity ys =

P
j∈J dsjxj in state

s. So, letting D = [dsj] denote the S × J indemnity (dividend) matrix, portfolio x
entitles its holder to the profile y = Dx.
Correspondingly, let Y := ImD := DX := {Dx : x ∈ X} be the image space of

D, spanned by its columns d·j ∈ Y, j ∈ J. The possibly strict subspace Y ⊂ Y = ES
consists of marketable indemnity profiles. Vectors in YÂY cannot be synthesized
via the given instruments; they are not ”in the market.” A profile y ∈ Y will be
realized by any portfolio x ∈ X which solves Dx = y. At least one such x exists by
the definition of Y . Uniqueness of x follows iff D : X → Y is one-to-one. In that
case |J | = rank(D) = dimY . In particular, when Y = ES, there must be as many
treaties as there are states.
At the outset agent i holds portfolio x̄i, generating risk ȳi := Dx̄i. Coalition C,

holding the aggregate x̄C :=
P

i∈C x̄i, can achieve

πC(ȳC) = sup

(X
i∈C

πi(yi) :
X
i∈C

yi = ȳC := Dx̄C , yi = Dxi, xi ∈ X

)

= sup

(X
i∈C

πi(Dxi) :
X
i∈C

Dxi = Dx̄C , xi ∈ X

)
.
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This instance fits Proposition 3. Note that unlimited shortselling is allowed. Oth-
erwise appropriate constraints xi ∈ X i ⊂ X would be imposed. The transpose
matrix D∗ transports risk prices y∗ ∈ Y∗ back to prices x∗ = D∗y∗ on underlying
portfolios by the rule x∗j =

P
s∈S y

∗
sdsj. Accordingly, posit π̂

i(x) := πi(Dx) to have
π̂i∗(D∗y∗) = πi∗(y∗). Because D∗y∗ = 0 if y∗ ∈ (ImD)⊥ = Y ⊥ = N∗, we get

Proposition 5. (Shadow prices on treaties generate core solutions) For any ini-
tal holding profile (x̄i) and associated shadow price regime −→y ∗ = (yi∗) = (y∗ + ni∗)
on risks, there is a corresponding price regime x∗ := D∗yi∗ = Dy∗ on portfolios such
that the payment scheme

ci := πi∗(y∗ + ni∗) + y∗(Dx̄i) = πi∗(y∗ + ni∗) + (D∗y∗)x̄i = π̂i∗(x∗) + x∗x̄i (20)

belongs to the core. That is, it satisfies (3). ¤

Clearly, i could have access to a particular set J i of treaties, defined by an S×J i ma-
trix Di. If so, (20) would remain a core solution with Di instead of D. Agent i might
also have handy a technology by which his effort ei produces a profile E i(ei) ∈ Y.
Then, if i enjoys concave payoff Πi(ei, yi), coalition C gets payoff

πC(ȳC) = sup

(X
i∈C

Πi(ei,Dixi + E i(ei)) :
X
i∈C

£
Dixi + E i(ei)

¤
= ȳC

)
.

When however, only agent i knows ei or E i(·), there may be problems with hidden
actions or types, these making the prospects for efficient cooperation appear less
good.15

This section ends by considering repeated bilateral exchanges of portfolios.
It could go as follows:

• Start at stage k := 0 with step size γ := γ0 and choices xi ∈ X, i ∈ I, deter-
mined by history or accident.
• Choose two agents i, i0 according to the uniform distribution (i.e. in equiprobable
manner).
• Select marginal payoffs mi ∈ ∂πi(Dxi), mi0 ∈ ∂πi

0
(Dxi0) and let xi∗ = D∗mi,

xi
0∗ = D∗mi0 .

• Update the choices by bilateral exchange of portfolios

xi ← xi + γ(xi∗ − xi
0∗) and xi

0 ← xi
0 − γ(xi∗ − xi

0∗)

• Move to next stage k ← k + 1 with new step size γ ← γk.
• Continue to Choose two agents until convergence. ¤

15Studies dealing with core solutions under asymmetric information include [8], [9], [23] and [37].
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Like Theorem 3 one proves:

Theorem 5. Under the assumption of Theorem 4 repeated bilateral exchanges of
portfolios lead to an optimal solution of problem (2) for the grand coalition. ¤

9. Concluding Remarks
Cooperation, exchange and trade often appear as cousins in economics. Here, given
symmetric information and wide-spread risk aversion, or at least risk neutrality, the
cooperative incentives become so strong and well distributed that the grand coalition
can safely form. Its formation means that all risks are pooled and that benefits be
shared in ways not blocked by any subgroup. However, when preferences are not
convex, the price-based compensation scheme (7) is likely to reside out-of-core; see
[12], [14]. It appears though, that if all risk holders were negligible, then convexity
could be dispensed with; see [1], [38].
It seems worthwhile to allow more time periods and explore problems related to

time-consistency. Then, for properties of the characteristic function and the core, see
[18].
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