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Abstract

This paper considers non-linear taxation to regulate fisheries. It

compares that instrument with quantity control and linear taxation.

Traditionally the question of how to regulate fisheries has been posed

as a choice between price and quantity control. A numerical example,

concerned with demersal fisheries, indicates that non-linear taxation

is superior to quantity control. When cost uncertainty is involved, it

can also prove more efficient than the price instrument.

JEL classification: D82, H21, Q22

Keywords: Fisheries management; Uncertainty; Non-linear taxation;
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1 Introduction

Fisheries management struggles, in practice and theory, with how to secure

efficiency. Decisive for the biological and economic outcome is the choice

of control instruments. While direct quantity regulation is most common,
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economists, in contrast, often prefer indirect control, using prices. Of current

interest in that debate is a recent paper of Weitzman (2002). He proves the

superiority of landing fees over quantity control when decisions must be made

with inaccurate stock estimates. A major point of Weitzman is that greater

ecological uncertainty seems to enhance the relative performance of the price

instrument.

This paper adds to Weitzman’s study by incorporating economic un-

certainty as well. When Jensen and Vestergaard (2003) undertook a simi-

lar investigation, they aimed at generalizing Weitzman’s (1974) proportions

about "Prices vs. Quantities" to dynamic fisheries. His result, that price

dominates quantity control if marginal costs are more sharply curved than

marginal benefits, was found applicable for schooling fisheries. For demersal

instances, however, where harvesting costs are stock dependent, they found

an analytical approach intractable.

Since demersal species are economically most important, this motivates

me to investigate how instruments compare for such fisheries. Numerical

methods must be used anyway. Therefore, apart from considering price and

quantity control, I will consider the non-linear tax alternative for fisheries

management. This is motivated by the fact that nonlinear instruments have

already been central in studies of static models (e.g. Weitzman, 1978; Kaplow

and Shavell, 2002) and by the Berglann (2005) paper which shows that such

fees can be shared between parties in a way that relieves them from strategic

considerations.

As vehicle for comparison I use dynamic programming to compute, for

each instrument, the optimal expected present value over an infinite time

horizon. Out of concerns with safety I also investigate each scheme’s ability

to prevent resource extinction. Of particular interest is comparison of pro-

portional taxation with the non-linear tax proposed here. Quantity control

serves as a benchmark. The dynamic model is based on Reed (1979). Like

Clark and Kirkwood (1986) and Weitzman (2002) I assume that the stock

size is known only up to probability for the manager when he specifies the

considered instrument.

The paper is organized as follows: Section 2 specifies the diverse regula-
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tion schemes. Section 3 describes the dynamic model and the information

flow. Dynamic programming serves to optimize the instruments as described

in Section 4. Section 5 compares optimal yields of the fixed quota-, the linear

tax, and the non-linear fee systems when stock estimates are uncertain; and

with and without cost uncertainty. Also included are results for a determin-

istic case. Section 6 investigates how the instruments fare in terms of the

probability for extinction. Section 7 concludes.

2 Regulatory Instrument Specifications

Consider a fishing industry comprising a large fixed number of identical ves-

sels. These exploit one species. Time is discrete and all parameters and

variables are non-negative. Total harvest in an arbitrary period is denoted

h, and x denotes the stock size in the beginning of that period. The first-hand

price p for landed fish is constant. Costs C (x̃) per unit harvest depends on

current stock x̃ as C (x̃) := c/x̃ where c is a constant common to all parties.

All skippers are profit maximizers with a time perspective restricted to the

current period, and they have perfect knowledge of c and current stock size

x̃.

Absent regulation and capacity constraints, the fishing industry solves

the problem

max
h

{
ph− c

∫ x

x−h

1

x̃
dx̃

}
= max

h

{
ph− c ln

(
x

x− h

)}
. (1)

The necessary (and sufficient) condition for an interior solution of problem

(1) is expressed by the function HOA (Open Access) defined by

HOA (x, c) := h = x−
c

p
. (2)

It is well known that this outcome (2) might cause overfishing, the chief rea-

son being absence of intertemporal concerns. Some central agent is bestowed

with the authority to avoid the ”tragedy of commons” by regulating the fish-
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ery. In doing so the agent must cope with blurred information on the cost

parameter c and the stock size x at the beginning of the period. I consider

three control instruments in the hands of the said authority:

• quantity limitation, denoted a Fixed Quota (FQ);

• price control, denoted a Linear Tax (LT);

• non-linear taxation, denoted an Expected Quota (EQ).

We now define how fishermen comply with these schemes:

2.1 The Fixed Quota (FQ) Instrument

The regulator specifies a non-negative total quota q (TAC) for the period.

The fishing industry solves the same problem as in the case with no regulation

(1) except that the quantity restriction is binding when q ≤ HOA (x, c). Thus

fishermen, regulated by the FQ instrument, select a harvest hFQ equal to

hFQ = HFQ (x, c, q) := max
(
0,min

(
HOA (x, c) , q

))
. (3)

2.2 The Linear Tax (LT) Instrument

In this scenario the regulator specifies a linear tax b on catches in the period.

The industry solve the problem

max
h

{
(p− b) h− c ln

(
x

x− h

)}
(4)

subject to the condition 0 ≤ h ≤ x. This yields a harvest hLT equal to

hLT = HLT (x, c, b) := max

(
0,min

(
x, x−

c

p− b

))
. (5)
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2.3 The Expected Quota (EQ) Instrument

A second order approximation of a generic strictly convex tax (without a

lump sum part) levied on the industry’s total harvest in the period is given

by1

t := βh+
γ

2
(h)2 (6)

where β ≥ 0 and γ > 0 are parameters that the regulator can choose for the

period. The problem for the industry is

max
h

{
ph− t− c ln

(
x

x− h

)}
(7)

subject to 0 ≤ h < x. Using the root that always gives h < x of the necessary

(and sufficient) condition

p− β − γh−
c

x− h
= 0 (8)

for an interior solution of (7) yields a harvest hEQ equal to

hEQ = HEQ (x, c, β, γ) (9)

: = max

(
0,
1

2γ

(
p− β + γx−

√
(β − p+ γx)2 + 4γc

))
.

I have now determined how fishermen comply under the various regulating

regimes. Let the integer k index a particular fishing period. To compact

notation I hereby symbolize control parameter(s) in period k under regime

1Berglann (2005) shows that this non-linear tax, just like a total quota, can be dis-
tributed to individual fishermen in a way that overcomes strategic interaction amongst
them.
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R ∈ (FQ,LT,EQ) as

u
R

k :=






qk in case R = FQ

bk in case R = LT

βk, γk in case R = EQ

such that harvest in period k is expressed by hRk = HR

k

(
xk, c, u

R

k

)
. The task

of the regulator could be the assignation of a ”best value” of uRk under an

infinite time horizon perspective. To consider this, I must first specify the

dynamic model and how information is updated.

3 The Model and the Information Flow

The information flow is illustrated in Figure 1. It comprises two stages and is

described as follows: The exact escapement level sk−1, the stock remaining at

the end of stage k− 1 after harvesting, is common knowledge. From the end

of stage k − 1 to the beginning of stage k, breeding takes place. Breeding is

represented with the discrete resource model proposed by Reed (1979) given

by

xk = zk−1G (sk−1) (10)

where the commonly known average stock-recruitment relationship G (·) is

multiplied by the random factor zk−1. At the beginning of stage k, stock size

xk emerges (10), but with uncertainty for the regulator since zk−1 has not

yet been disclosed for him.

The random variables zk−1 for all k are assumed to be independent and

identically distributed with probability density function f (zk) = f (z) with

mean z = 1. For the regulator, the cost parameter c is uncertain, but has a

known probability density function θ (c) with mean c. Based on this statis-

tical information for xk and c, the manager must decide for a ”best” value

of the parameter(s) uRk of his control instrument R.
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Period k k+1 k 

sk-1 

Escapement 

commonly 

known. 

 time 

 

Breeding  

zk-1G(sk-1). xk 

 

Realized stochastic 

variable zk-1 and 

thereby arriving 

stock xk  observed 

only by fishermen. 
 

Manager decides regulatory 

parameter(s) uk
R  in face of 

uncertainty about xk and c. 

 

Fishermen choose 

harvest hk
R  under 

perfect information.
 

Breeding  

zkG(sk). 

sk = xk - hk
R

 

 

xk+1 

 

Figure 1. Informational sequence

The fishermen are better informed. They respond to a regulatory setting

uRk during period k based on certain knowledge. In effect, they know the

realization of zk−1 and thereby the arriving stock xk when they determine

the fishing effort that yields harvest hRk = HR

k

(
xk, c, u

R

k

)
for that year. At

the end of the period k escapement is

sk = xk − hRk , (11)

which now also is revealed for the regulator such that sk becomes common

knowledge. Then next period follows.

4 Optimal Management over Time

Due to the stationarity of the stochastic variables z and c, the dynamic

problem that must be solved by the manager using regime R is the same for

every period k. So without loss of generality, I can in the following consider
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regulator’s problem at the beginning of period k = 1 when s0 is known.

Stationarity of the environment also implies that the problem is expressed

by the Bellman equation

V R (s0) = max
UR
1

E
{
Π1
(
x1, c, h

R

1

)
+ ρV R

(
x1 − hR

1

)
|s0
}

(12)

where V R (·) is the optimal expected present value function, ρ ∈ (0, 1) de-

notes the discount factor and harvest is hR
1
= HR

1

(
x1, c, u

R

1

)
. The function

Π1 (·) is the current social economic value of the fishery for year 1, given by2

Π1
(
x1, c, h

R

1

)
:= phR

1
− c ln

(
x1

x1 − hR
1

)
. (13)

The expectation operator E {·} in this paper pertains to the expected value of

all uncertain variable(s) within the brackets. Here (12) the operator pertains

to x1 given s0 that has the probability density function

g (x1) :=
1

G (s0)
f

(
x1

G (s0)

)
(14)

and to the cost parameter c with probability density function θ (c).

As customary the functional equation (12) is solvable through successive

approximation and the result V R (·) is unique3.

5 Numerical Example

In my numerical example is the price for fish p = 1; the discount factor

is ρ = 0.9. The stock-recruitment model that Clark and Kirkwood (1993)

used in their numerical example is given by (1− exp (−2s)). Since extinction

probabilities are of great interest (next section), however, I want to extend

that example to include depreciation. Hence, I specify the model as

2This expression is equivalent to fishermen’s profit function under open access (1).
3For s0 high enough is Π1

(
x1, c, h

R
1

)
concave. Under these circumstances the solution

is unique (Weitzman, 2002).
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G (s) = (1− exp (−2s)) (1− exp (−10s)) . (15)

This model has a stable natural equilibrium at x = 0.796, but also an un-

stable equilibrium point at x = 0.0776. Thus, the population is doomed to

extinction if the stock ever falls below the critical level given by the unstable

equilibrium point.

The stochastic variables z and c are both assumed to be lognormally

distributed. While the probability density distribution f (z) has standard

deviation σz = 0.4, and as already stated, a mean z = 1, the corresponding

parameters for the c distribution θ (c) are σc = 0.1 and c = 0.1, respectively.

The following diagrams are parametric plots with s0 as the varying parame-

ter. They use expected recruitment E {x1} as the abscissa function, given

by

E {x1} = E {x1| s0} = E {z0G (s0)} = zG (s0) = G (s0) . (16)

Figures 2, 3 and 4 displays solutions of the functional equation (12) given

in last section. The legends of these figures (and the figures that follow as

well) indicate to which system the various curves belong, ranked after the

ordinate value at the end of the abscissa axis. Figure 2 shows the optimal

expected present value function V R (s0) of the fishery for all systems R and

under the statistical parameter values I have picked out. Known costs for the

EQ and LT system, stands for that costs are given by its mean value c. The

deterministic system is equivalent to an FQ system where the value of z0 is

known and given by its mean value z = 1. The according optimal policies

appear in Figure 3. These policies are displayed in the form of targets for the

optimal expected escapement levels denoted E
{
sR∗
1
|s0
}
for regime R and

calculated by

E
{
sR∗
1
|s0
}
= E

{
max

(
0, x1 −HR

1

(
x1, c, u

R∗

1
(s0)

))
|s0
}

(17)
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where uR∗
1
(s0) is the obtained optimal arguments functions defined as

u
R∗

1
(s0) :=






q∗
1
(s0) in case R = FQ

b∗
1
(s0) in case R = LT

β∗
1
(s0) , γ

∗

1
(s0) in case R = EQ

.

Figure 4 shows optimal arguments b1 = b∗
1
(s0) for the LT-system and β

1
=

β∗
1
(s0) and γ1 = γ∗

1
(s0) for the EQ-system. In addition I list in Table 1 and 2

the expected recruitment levelG
(
E
{
sR∗
∞

})
and the optimal expected present

value V R
(
E
{
sR∗
∞

})
at the stationary optimal expected escapement level

(defined implicitly as E
{
sR∗
∞

}
:= E

{
sR∗
∞

∣∣E
{
sR∗
∞

}}
) for all of my choices.

0.2 0.4 0.6 0.8 1
E8x1<

0.25

0.5

0.75

1

1.25

1.5

VRHs0L

FQ−Fixed Quota

with known costs

FQ−Fixed Quota

uncertain costs

LT−Linear Tax

uncertain costs

EQ−Expected Quota

uncertain costs

Deterministic

LT−Linear Tax and

EQ−Expected Quota

with known costs

Figure 2. Expected value vs expected recruitment.
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0.2 0.4 0.6 0.8 1
E8x1<

0.1

0.2

0.3

0.4

0.5

E8s1
R∗»s0<

Deterministic

LT−Linear Tax and

EQ−Expected Quota

with known costs

LT−Linear Tax

uncertain costs

EQ−Expected Quota

uncertain costs

FQ−Fixed Quota

with known costs

FQ−Fixed Quota

uncertain costs

Figure 3. Expected escapement vs expected recruitment.

0.2 0.4 0.6 0.8 1
E8x1<

0.2

0.4

0.6

0.8

1

b1,β1,γ1

γ1−Expected Quota

uncertain costs

β1−Expected Quota

uncertain costs

b1−Linear Tax and

β1−Expected Quota

with known costs

b1−Linear Tax

uncertain costs

Figure 4. Instrument parameter values vs expected recruitment.
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Table 1: Expected recruitment at the stationary expected escapement level,G
(
E
{
sR∗
∞

})
.

Deter- FQ FQ LT / EQ LT EQ

ministic σc=0. σc=0.1 σc=0. σc=0.1 σc=0.1

0.5273 0.5719 0.5668 0.5186 0.5620 0.5533

Table 2: Expected present value at the stationary expected escapement level, V R
(
E
{
sR∗
∞

})
.

Deter- FQ FQ LT / EQ LT EQ

ministic σc=0. σc=0.1 σc=0. σc=0.1 σc=0.1

1.096 0.7197 0.7438 1.105 0.9051 0.9430

0.25 0.3 0.35 0.4 0.45 0.5
E8x1<

0.25

0.3

0.35

0.4

E8s1
R∗»s0<

LT−Linear Tax and

EQ−Expected Quota

with known costs

Deterministic

EQ−Expected Quota

uncertain costs

LT−Linear Tax

uncertain costs

FQ−Fixed Quota

uncertain costs

FQ−Fixed Quota

with known costs

Figure 5. Expected escapement vs expected recruitment. Close-up of Figure 3.

Notice in Figure 3 how the constant escapement policy emerges for the

deterministic case. No harvest takes place when x1 (= E {x1}) is lower than

a specific value; when x1 (= E {x1}) is above this point, optimality dictates

that all stock in excess of the specified escapement level should be harvested.

For the two FQ cases (with uncertain x1; with and without cost uncer-

tainty), the optimal escapement diagrammed in Figure 3 are non-constant

feedback solutions, which yields quota settings q1 = q∗
1
(s0) dependent on the
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result of stock surveys. Not shown in any of my figures is that these quota

settings are slightly higher than the harvest being expected by the manager,

a gap that increases with the value of E {x1} and becomes more dominant

in the cost uncertainty case. The gap is caused by that the quota q1 will

not always be binding because the open access solution in some cases can

take over as the catch boundary. This limitation is favorable because it hap-

pens in instances when the stock happens to be low and can then save the

stock from extinction. A high cost by itself means a low value of the fishery.

Even though, under cost uncertainty is a cost level above mean costs c more

honored because the mentioned harvest limitation is more likely to be active

than if costs are correspondingly below c. As seen in Figure 3 and Table 2,

this asymmetry in cost appreciation (from the manager’s side) is the reason

why the FQ case with cost uncertainty has a higher expected present value

than in the known cost case.

In Figure 5, a close-up of Figure 3, we see better the result remarked

by Clark and Kirkwood (1986): the FQ (known costs) optimal policy is not

uniformly cautious. The threshold for E {x1}, when the FQ curve leaves the

line where the optimal harvest is zero, is lower with stock uncertainty than

with exact knowledge. Clark and Kirkwood found this effect to increase with

the stock uncertainty level. The reason is that the optimal harvest, on the

boundary when the threshold is exceeded, will be low. The harvest is then

safe in the sense that the effect on the value due to the danger of extinction is

minimal. Since stock uncertainty means the possibility of the stock becoming

larger than the optimal deterministic threshold, it is optimal with a lower

threshold level than that found in the deterministic case. My result indicates

that adding cost uncertainty has the same influence on the threshold level as

increased stock uncertainty.

With linear landing fees and known costs, the similar threshold for when

harvesting should be allowed is, as we see in Figure 3 and 5, very low. The

low threshold is caused by the possibility to instill the price in such a manner

that it will block harvesting when the stock happens to be slightly lower than

the favored value. Then, as I demonstrate in the next section, harvesting can

take place with a risk of resource collapse that approximates the chance at no
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harvest. With these features it is difficult to perform better. Not surprisingly,

I therefore find EQ regulation to approximate LT control in this known costs

case: β
1
≈ b1 and γ

1
≈ 0 for all s0.

Another observation is in Figure 4: the optimal landing fee is indepen-

dent of E {x1}
4. Weitzman (2002) finds an analytical expression for such a

constant landing tax by assuming that the regulator knows recruitment x1.

He can assume common information of x1 because he predicts ahead that

the tax is equal for all x1 (= E {x1}) and then regulator does not need any

stock size estimate. I, however, must neglect that approach to make the out-

come comparable to my other cases where the optimal tax might depend on

E {x1}. Then I find (numerically) that the tax should be higher than in the

Weitzman case and furthermore, a higher expected present value.

The effect that "only knowing x1 up to probability" makes the fishery

more valuable is peculiar but comparable to what I found above for the FQ

systemwhere cost uncertainty made the fishery more prized. The explanation

is asymmetry in the appreciation of the uncertainty; the chance of a high

stock level is weighted more than the loss of value, due to the corresponding

chance of a lower stock level. As we see in Figure 2 for high values of E {x1}

and in Table 2, the uncertain costs case considered here even dominates the

deterministic instance.

While it is the other way round for the FQ-regime the entrance of cost

uncertainty when regulating with the LT and EQ systems decreases the ex-

pected present value of the fishery. As we see in figure 4, for the LT system,

the optimal b1 control is no longer constant with respect to s0. It decreases

with expected recruitment and it is higher (which reflects a more cautious

policy) than its ”known costs” counterpart. Furthermore, contrary to FQ

regulation, the threshold for when the fishery should open increases with the

cost uncertainty level.

For the EQ instrument under cost uncertainty, the extra degree of freedom

of having one more parameter to adjust to reach an optimum is now put to

use. Figure 4 shows clearly at which E {x1}-value an initially closed fishery

4For E {x1} below the treshold level is zero harvest the optimal policy. This closed
state of the fishery is achieved with any tax choice equal to or above the constant value.
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should be opened up. A fishery in a closed state (which can be achieved by

many β
1
, γ

1
combinations) is indicated here by that the γ

1
-value has jumped

out of the diagram to a very high (or infinite) value while the β
1
parameter

value is arbitrary. We see in Figure 5 that the E {x1} threshold value falls

together with the threshold for the LT regime with identical cost uncertainty.

Returning to Figure 4 we observe, for the fishery in the open state, that the

β
1
parameter decreases with expected recruitment while the γ

1
- parameter

first increase, and then reach a maximum level before it decreases again. A

main finding is that the EQ system is superior to the LT-system. This is for

instance reflected in Figure 2 and by that the stationary expected present

value (in Table 2) is higher for the EQ system. Both the LT and EQ regimes,

however, significantly outperform the FQ-system.

So far I have compared the systems in the context of the optimal expected

present value. Some of these optimal policies can be very risky with respect

to keeping the fish stock alive. As Clark and Kirkwood (1986) say about

their own findings for the FQ system: ”The counterintuitive nature of these

results may in part be a consequence of our assumption of risk neutrality,

or more precisely, of the assumption that there is no intrinsic ’preservation

value’ associated with the resource stock.”

Such a ”preservation value” would have been given a higher weight in

above calculations if the discount factor had been assumed to be closer to

one. My investigation focus on how instruments fare in terms of extinction

probabilities.

6 The Probability for Extinction

There is depreciation in the resource model (15): if, in the next period, stock

x2 is below the unstable equilibrium point, the population will eventually

die out. Let ψ (x2) denote the probability density function for x2 after har-

vesting. Then the probability for extinction is calculated as the cumulative

distribution function Ψ(x
2
) for the stock to be below x

2
:
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Pr (x2 ≤ x
2
) = Ψ (x

2
) := 1−

∫
∞

x
2

ψ (x2) dx2 (18)

where x
2
= 0.0776 is the unstable equilibrium point of the model. Since the

probability density function for x2 obviously varies with initial escapement

s0 I suppress this argument in the following notation.

The probability distribution function for x2 when c is fixed, is written as

ψ (x2 |c) =

∫
∞

0

ψ (x2 |x1, c) g (x1) dx1 (19)

where g (x1) is the probability density function for x1 for a given s0, as defined

in (14) and

ψ (x2 |x1, c) :=
dz1 (x1, x2, c)

dx2
f (z1 (x1, x2, c)) (20)

is the probability distribution for x2 for given values of x1 and c. The function

f (·) is the probability distribution for z and the function z1 (x1, x2, c) is given

by

z1 (x1, x2, c) =
x2

G
(
x1 −HR

1
(x1, c, uR)

) (21)

whereHR

1

(
x1, c, u

R
)
is the harvest under regulation systemR ∈ (FQ,LT,EQ).

The wanted probability distribution function for x2 when allowing the cost

parameter c to be uncertain is now determined by

ψ (x2) =

∫
∞

0

ψ (x2 |c) θ (c) dc (22)

where θ (c) is the probability density function for c.
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0.2 0.4 0.6 0.8 1
E@x1D

1. × 10−6

0.00001

0.0001

0.001

0.01

0.1

PrHx2≤x̄2L

No Harvest

LT−Linear Tax and

EQ−Expected Quota

with known costs

FQ−Fixed Quota

with known costs

FQ−Fixed Quota

uncertain costs

Figure 6. Probability for extinction after optimal harvesting for each system, respectively.

0.2 0.4 0.6 0.8 1
E@x1D

0.005

0.01

0.05

0.1

0.5

Pr Hx2≤x̄2L

EQ−Expected Quota

uncertain costs

LT−Linear Tax

uncertain costs

FQ−Fixed Quota

uncertain costs

Figure 7. Probability for extinction after optimal harvesting for each system, respectively.
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0.2 0.4 0.6 0.8 1
E@x1D

0.001

0.005

0.01

0.05

0.1

0.5

PrHx2≤x̄2L

EQ−Expected Quota

upper σc=0.5

lower σc=0.4

LT− Linear Tax

upper σc=0.5

lower σc=0.4

FQ−Fixed Quota

upper σc=0.5

lower σc=0.4

Figure 8. Probability for extinction after optimal harvesting for FQ with σc=0.4

Figures 6 and 7 show the probability of extinction on a logarithmic scale

as a function of expected recruitment E {x1} when respective optimal policies

are employed. Comparison between the two upper curves in Figure 6 reveals

that the higher expected present value I found in last section for the fishery

due to cost uncertainty in the FQ case presents itself at the expense of an

increased extinction probability.

As mentioned can the LT (and the approximately equivalent EQ) regime

with known costs be very effectively instilled. Optimal parameter settings

will block the harvest if the stock size is slightly below the optimal level,

and as we see in the lower part in Figure 6 the result is an extinction risk

Pr (x2 ≤ x
2
) that is only meagerly higher than the risk associated with no

harvesting at all. The distinctness is only recognizable in the figure for high

values of E {x1}. Still in Figure 6, we see that the FQ system expose the

fish stock for a significantly higher extinction risk even though the harvest

outcome of its optimal policy is considerably lower.
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It is, however, under cost uncertainty that comparison with the FQ regime

is upright; cost uncertainty is present in practice, and the FQ system is

more resistant to its effects than the other regimes. In Figure 7, curves are

displayed when the respective optimal policies in this case are employed.

We see that the EQ system is superior to the FQ regime for most values of

E {x1}, while the LT system is inferior to all for the low and middle range

of E {x1}.

Regarding fair comparison between the various systems: A ceteris paribus

condition for a comparison would emerge when the expected harvest out-

comes are equal. For the EQ-regime there will in this case be many com-

binations of its two parameters that yield the same expected harvest. So

for this system I determine which combination of β
1
and γ

1
that for a given

expected harvest gives the minimum extinction probability. Today, regula-

tion in fisheries is largely implemented by the FQ system. Then the intrinsic

value of an eventual diminished extinction probability is a direct measure

of the Pareto improvement (free lunch) when changing to an LT or an EQ

regime.

Figure 8 shows curves for the systems under cost uncertainty when the

expected harvest in all instances is the optimal harvest for the FQ system

when σz = 0.4. The curve for this case is displayed in all the figures 6, 7 and 8.

First, (in Figure 8) pay attention to the LT and EQ curves labeled σz = 0.4:

The EQ regime gives the lowest extinction probability. Its superiority over

the FQ system increases with E {x1} and the extinction probability is about

60% less for the highest abscissa values. Also the LT system is inferior to

the EQ regime. For a small range of middle values of E {x1} the extinction

probability for the LT regime is even higher than for the FQ system.

Now let us turn to all curves in Figure 8 labeled σz = 0.5. We know

from Weitzman (2002) (although he did not include cost uncertainty) that

the advantage of price compared to quantity control may increase along with

ecological uncertainty. Thus, with cost uncertainty held fixed, and with

a higher stock uncertainty, the LT-regime should perform better; at least

compared to the FQ system. We see, as predicted by Weitzman, that the

performance of the LT system is now markedly better than that of the FQ
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regime. The increased extinction probability associated with the increased

stock uncertainty is minimal for the LT regime (on the logarithmic scale),

and while the EQ system still dominates, its comparable advantage over LT

regulation is much less.

7 Concluding Remarks

This paper compares various tools for managing fisheries using a numerical

example. The two most important factors in the example are that unit har-

vesting costs depends on fish abundance (a demersal fishery), and, secondly,

that specification of values for instrument parameters is based on statistical

knowledge. For this I assume fish stock surveys to have a 40% standard de-

viation, and that uncertainty regarding fishermen’s costs on unit effort has

a 100% standard deviation of its mean.

I consider three instruments. Quantity control is most common: Wilen

(2000) estimates that about 55 fisheries in the world are regulated with the

ITQ regime, in which shares of TAC are distributed among fishermen by

making the shares marketable. The purpose of privatizing the right to catch

a Fixed Quota (FQ) is that the incentive to ”race” for fish for strategic

reasons may vanish. A Linear landing Tax (LT) is an alternative proposed

by Weitzman (2002). In a general discrete model where the fish stock is a

function of the last period escapement, Weitzman shows that such control,

under pure ecological uncertainty, is unambiguously superior to quotas.

My alternative manager instrument is based on levying fishermen a strictly

convex tax on catches. Berglann (2005) shows that it is possible to distribute

total tax payments to individual fishermen in a way that prevents strategic

moves between them concerning the sharing of payments. Then can for in-

stance a market mechanism, like the one employed in an ITQ regime, be used

to distribute shares of the total tax payment. The holding of a share cer-

tificate in such a regime will then correspond to the ITQ regime’s privatized

right to catch a certain amount of fish. I denote such a share of the expected

industry harvest an Expected Quota (EQ).

The results with my example show that the EQ system significantly
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Pareto dominates the practice of quota regulation. The domination is ex-

pressed both in terms of a higher optimal expected present value for the

fishery and, under circumstances of an equivalent expected harvest outcome,

in terms of a smaller stock extinction probability. When cost uncertainty

is present, strictly convex taxation also dominates the linear landing fee ap-

proach but to a lesser extent when ecological variance increases.

Remonstrance may claim that strictly convex taxation may be too com-

plicated for the fishing industry. Although this might be true, we should not

underestimate the human capability to learn and to adapt to complicated

situations. Hence, given that there might be political obstacles in imposing

linear taxation for instance because the fishermen want to hold on to the

resource rent, perhaps the non-linear alternative should be considered.
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