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Abstract

We study optimal incentive contracts in teams which consist of
two groups of agents di¤ering in their productivity, and in situations
where team members feel a social pressure to exert similar e¤ort levels.
We show that it is �rst-best optimal to induce the more productive
agents to exert higher e¤ort. We then characterize the equilibrium
under agency. The general conclusion we obtain regarding economic
incentives is that the principal always chooses to give the less produc-
tive agents the strongest incentives. That is, less productive agents
are o¤ered a salary scheme that is more responsive to the team out-
put than it is the case for the more productive agents. Furthermore,
we show that the principal is able to implement the unique �rst-best
solution. In this solution less productive agents exert less e¤ort, and
all agents experience peer pressure.
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1 Introduction

In many organizations, individuals feel a social pressure to exert similar e¤ort
levels. In such organizations intra-group e¤ort comparison between its mem-
bers may lead to e¤ort norms. This means that informal interactions among
the group members make it costly for individuals to perform an e¤ort level
that di¤ers from the e¤ort norm established in their work group, (Encinosa,
Gaynor, and Rebitzer, 1997). E¤ort norms can be sustained by feelings of
guilt or shame when not carrying one�s share of the group�s work (Kandel
and Lazer, 1992). Alternatively, e¤ort norms can result from the praise a
group member receives from working harder than others in the group.
E¤ort norms are studied empirically in Encinosa, Gaynor, and Rebitzer

(1997). These authors �nd that intra-group e¤ort comparisons among physi-
cians matter in medical partnerships. The fact that peer pressure (or intra-
group comparisons) a¤ect individuals�choice of e¤ort is also supported by
experimental data. In a laboratory study, Falk, Fischbacker, and Gächter
(2002) �nd that the same individual contributes more to a public good in
a group with high average contributions then in a group with a low contri-
bution level. Falk and Ichino (2003) show in a controlled �eld experiment
that the behavior of subjects working in pairs is signi�cantly di¤erent from
behavior of subjects working alone.
While it might be the case that peer pressure can raise the e¤ort levels

in a group, and hence the group�s production, peer pressure will typically
also a¤ect the employee�s pro�ts or utility negatively since workers have to
be compensated for the potential negative utility e¤ects that originate from
peer pressure. A question that naturally arises is thus how peer e¤ects af-
fect individuals�behavior, and thereby the employee�s pro�ts. How can the
employee a¤ect individual workers�behavior by use of economic incentives
when peer pressure e¤ects are present? How do the optimal incentive con-
tracts look like in the present of peer e¤ects? These are the questions we
attempt to answer in this paper.
To do so we put forward a simple principal-agent model of team pro-

duction when peer e¤ects are presents. In the model, individual output
depends on the e¤ort chosen by the individual and on his productivity (or
talent). Team output equals the sum of all individuals�production. Indi-
vidual production, and hence each individual�s e¤ort level, is unobserved by
the employee (or the principal), but total team output can be observed and
veri�ed. Furthermore, we assume that the principal observes a signal of each
individual agent�s productivity (or talent), and that the principal is able to
condition individual pay on this signal. Examples of such signals can be the
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individual�s years of schooling, formal levels of training, his position etc.1 In
this way we are able to analyze a situation where the agents�productivities
di¤er.
The following example illustrates the type of situations we have in mind.

Consider a team consisting of a specialist physician and of an assistant physi-
cian working at a hospital department. Each physician�s ability and choice
of e¤ort determines how many patients the department as a whole is able to
treat within a certain time period. As in Encinosa, Gaynor, and Rebitzer
(1997), let the informal interactions among the physicians make it costly for
each physician to perform an e¤ort level that di¤ers from the e¤ort norm
that is endogenously established among the physicians. Hence each physi-
cian is exposed to peer pressure. The hospital management (the principal) is
not able to observe each individual physician�s production, but the depart-
ment�s output (number of patients treated) can be observed and veri�ed.
Furthermore, the hospital management can identify if an individual is a spe-
cialist or an assistant physician, and treats this information as a signal of the
physician�s productivity (or talent). Moreover, the fact that a physician is
either an assistant or a specialist is veri�able information, such that the hos-
pital management can use this information when determining an individual�s
incentive scheme.
The general conclusion we obtain regarding economic incentives is that

the principal always chooses to give less productive agents the strongest in-
centives. That is, less productive agents are o¤ered a salary scheme that is
more responsive to the team output than it is the case for more productive
agents. Furthermore, we show that the principal is able to implement the
unique �rst-best solution if the agents are risk-neutral. In this solution less
productive agents exert less e¤ort, and all agents experience peer pressure.
To understand the intuition behind these results note that while it is

the case that peer pressure can encourage additional e¤ort from co-workers,
peer pressure also imposes costs on the other workers. These costs must be
compensated by the principal. Hence, peer pressure causes the principal to tie
the e¤ort levels of the agents more closely together relative to the case where
peer e¤ects are absent. In a situation with agency, i.e., when the principal
cannot write contracts directly on the agents�e¤ort level, the principal�s only
way to tie the e¤ort levels of di¤erent agents together is by using economic
incentives. Since the agents respond by exerting more e¤ort when exposed to
stronger incentives, the principal induces more e¤ort from the low-productive
workers by increasing their incentives. Similarly, the principal reduces the
incentives of the high-productive workers compared with a situation without

1In this respect we follow Spence�s (1973, 1974) idea of job-market signaling.
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peer e¤ects, entailing that these agents choose lower e¤ort in equilibrium.
Our analyzes of peer pressure is related to the work of Barron and Gjerde

(1997) and of Huck, Kübler, and Weibull (2002). The �rst of these papers
develops an agency model of peer pressure to identify factors that a¤ect
the extent of mutual monitoring. That is, they analyze how the incentive
scheme presented by the principal a¤ects the agents� incentives to costly
monitor other agents�e¤ort choices. Since monitoring e¤orts are costly for
the agents, the principal has to compensate agents for their monitoring costs.
Barron and Gjerde (1997) establish conditions under which the principal
reduces the incentives given to the agents as a mean to lower the monitoring
e¤orts. We do not include monitoring in our model. This is because we
do not want to exclude the possibility that peer e¤ects arise from internal
pressure (as opposed to external pressure). Here, internal pressure refers
to situations where an individual experiences disutility from not satisfying
the social norm, although his peers cannot identify him (Kandel and Lazear,
1992). Alternatively, if the peer e¤ects arise from external pressure, it might
be the case that monitoring is costless so that the principal does not have to
compensate the agents for their monitoring e¤orts.
Huck, Kübler, and Weibull (2002) do also focus on the interplay of eco-

nomic incentives and social norms. More speci�cally, these authors raise the
question if the interplay of social norms and economic incentives implies that
multiple equilibria may exists in teams of identical agents.2 We do however
follow the avenue chosen by Kandel and Lazear (1992) and rule out multi-
plicity by imposing certain convexity restrictions on the model. Furthermore
we note that both these papers consider the case where agents have identical
productivity.
The paper is organized as follows. In section 2 we outline the model,

and section 3 contains the analysis of �rst-best. Section 4 considers �rst-best
implementation, and section 5 presents some concluding remarks.

2 The Model

Imagine a situation where two groups of agents work for a principal. The two
groups di¤er with respect to their marginal productivity. Each agent decides
on the e¤ort he would like to exert on a single task. Making his decision,
he will weigh his marginal gains from the contract provided by the principal
and his marginal cost, which is assumed to arise from exerting e¤ort and

2Intuitively, multiplicity arises when a social norm introduces a coordination problem
into the agents�e¤ort choices: Choose high (low) e¤ort if you expect others to exert high
(low) e¤ort.
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from peer pressure. Taking the agents�reaction into account, the principal
decides on the contract o¤ered to each agent.
To fucus of the e¤ects of di¤erent productivity among agents we imagine

that individuals from one group only interact with individuals from the other
group, respectively. Correspondingly, they observe the e¤ort level only of
individuals of the other group. As a result, peer pressure of an individual
relates to how his own e¤ort compares to a measure of the e¤ort level of the
other group. To facilitate comparison with Encinosa, Gaynor, and Rebitzer
(1997) and Huck, Kübler, and Weibull (2002) we let this measure be the
average e¤ort level of the individuals of the other group. We denote the
two groups by I = f1; :::; kg and J = fk + 1; :::; ng ; where n is the total
number of agents, and 1 � k < n: Whenever eh represents the e¤ort level
of an individual of the one group, say h 2 I; then let e�H represent the
average e¤ort of individuals in the other group, i.e. e�I = 1

n�k
P

j2J ej and
e�J =

1
k

P
i2I ei:

Let each risk-neutral agents�payo¤ function be given by3

Ah + �hf(e1; :::; en)� c(eh)� P (eh � e�H); 8h 2 I [ J; (1)

where f(e1; :::; en) is the production function, P (�) is the peer pressure func-
tion and Ah + �hf(e1; :::; en) is agent h�s salary given his e¤ort level eh and
given the incentive contract (Ah; �h) provided by the principal. We assume
expected production to be

y = f(e1; :::; en) = fI

�P
i2I
ei

�
+ fJ

 P
j2J

ej

!
;

where fH is the expected marginal productivity (or talent) of agents from
group H; H = I; J . We imagine that expected individual productivity is
related to certain group-speci�c characteristics of the agents that are observ-
able for the principal. Examples of such characteristics include an agent�s
year of schooling (master or Ph.D. level), his level of training (number of
job-speci�c courses taken) or his position (laboratory assistant or professor).
Since these types of information can easily be veri�ed by a third party, it is
possible for the principal to tie individual pay to expected individual pro-
ductivity. In addition, the principal observes team output, while she cannot
observe the agents�choice of e¤ort. Without loss of generality, let group J
contains the more productive agents, i.e. fJ > fI � 0:

3We choose to focus on risk-neutrality to highlight the e¤ects of peer pressure on
incentives. In section 5 we comment on how the analysis will be a¤ected if agents are
risk-averse.
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Each agent�s cost of exerting e¤ort e � 0 is c(e) which we assume to
satisfy the following assumption:

Assumption (C) Let the cost function c(e) be twice di¤erentiable, in-
creasing, strictly convex and display zero marginal cost at the origin, i.e.

(i) c0(eh) > 0, (ii) c00(eh) > 0 for eh > 0 and (iii) c0(0) = 0.

Notice that (i) and (ii) imply that c(e) is unbounded; for all 0 � bc < 1
there exists some e 2 [0;1) such that c(e) > bc:
The peer pressure function captures that each agent h feels a social pres-

sure to exert an e¤ort level similar to that of the other agents.

Assumption (P) Suppose the peer pressure function P (z); where z =
ei� eJ for i 2 I and z = ej � eI for j 2 J; is twice di¤erentiable and satis�es
(i) P (0) = 0; (ii) P 0(0) = 0; (iii) P 00(z) � 0 for z � 0 and P 00(z) > 0 for
z < 0, and (iv) P (�z) � P (z) 8z > 0:
Part (i) states that a single agent does not fell peer pressure if his e¤ort

is identical to the e¤ort level of the other agents. Parts (ii) and (iii) guar-
antee that peer pressure is minimized in that case (possibly, with existing
other minimizers, z, which necessarily have to be positive). Finally, part
(iv) states that falling below the social norm induces no lower peer pressure
than exceeding it by the same absolute amount. Notice that the agent with
the highest e¤ort level might not experience peer pressure at all. Example 2
below represents such a case.
To illustrate the �exibility of Assumption (P), we include the two follow-

ing examples:

Example 1 Conformity preferences (Huck et al, 2002 ). Suppose PA(z) =
(eh � e�H)

2: With conformity preferences, exerting higher e¤ort is as bad as
exerting lower e¤ort that is lower by the same amount.

Example 2 Loss aversion (Encinosa et al, 1997 ). Suppose PB(eh�e�H) =
� � (minf(eh�e�H)=2; 0g)2: Under loss aversion, peer pressure is present only
for e¤ort below average. The parameter � > 0 measures the intensity of peer
pressure.

Let the agents choose their e¤ort level with the objective of maximizing
individual payo¤,

max
eh�0

fAh + �hf(e1; :::; en)� c(eh)� P (eh � e�H)g 8h 2 I [ J:

The corresponding �rst-order conditions are

�hfh(e1; :::; en)� c0(eh)� P 0(eh � e�H) = 0 8h 2 I [ J; (2)
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where y0(�) denotes the �rst-order derivative of any function y(�).
The �rst-order conditions de�ne e¤ort levels as functions of incentives,

eh = eh(�I ; �J); h 2 I [ J; (i.e., the agents� incentive constraints). The
agents�participation constraints are given by

Ah + �hf(�)� c(eh)� P (eh � e�H) � u0h 8h 2 I [ J;

where u0h represents the monetary value of some exogenous outside option
for agent h 2 I [ J .
The principal, who only observes aggregate production, is risk-neutral

and maximizes her (expected) payo¤,

f(e1; :::; en)� k [AI + �If(�)] + (n� k) [AJ + �Jf(�)]

subject to the participation constraints and taking into account the agents�
optimal response to the incentives �h; h = I; J:
The principal�s problem of maximizing her expected payo¤ subject to the

incentive and participation constraint is equivalent to maximizing the total
collective surplus of the agents and the principal taking into account the
agents�optimal response to the incentives she provides. Assuming that the
participation constraints are satis�ed in equilibrium, the principal�s maxi-
mization problem is

max
�I ;�J

(
f(e1; :::; en)�

X
h

c(eh)�
X
h

P (eh � e�H)

)
(3)

s:t: eh = eh(�I ; �J) h 2 I [ J:

The corresponding �rst-order conditions are given by

fI
@ei
@�H

+ fJ
@ej
@�H

� c0(ei)
@ei
@�H

� c0(ej)
@ej
@�H

�
X
i2I

P 0(ei � ej)
@(ei � ej)

@�H

�
X
j2J

P 0(ej � eI)
@(ej � eI)

@�H
�
X
h2I[J

P 0(eh � e�H)
@(eh � e�H)

@�H
= 0 8H = I; J:

These equations implicitly de�ne the optimal incentives for this principal-
agent problem. Without knowing the functional form of the cost and peer
pressure it is not possible to determine an explicit solution. We are however
able to establish that it is always optimal for the principal to give stronger
incentives to the less productive agent, i.e., �J < �I : First, we prove existence
of unique �rst-best e¤ort levels.
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3 First-Best E¤ort Levels

Suppose it is possible for the principal to write contracts on e¤ort levels
directly. From the principal�s objective function, we can derive the following
characterization of �rst-best e¤ort levels

fi � c0(ei)� P 0(ei � eJ) +
1

k

X
j2J

P 0(ej � eI) = 0 8i 2 I (4)

fj � c0(ej)� P 0(ej � eI) +
1

n� k

X
i2I

P 0(ei � eJ) = 0 8j 2 J: (5)

Since the principal�s objective function is symmetric within groups of
players, existence of a maximizer to (3) implies existence of an intra-group
symmetric solution to (3). Moreover, the principal is indi¤erent between all
these solutions. Therefore, it is su¢ cient (and convenient) to show existence
and uniqueness of an symmetric intra-group solution, i.e. where e�i = e�I for
all i 2 I and e�j = e�J for all j 2 J:

Proposition 1 Suppose the principal-agent problem satis�es Assumptions
(C) and (P). Then there exists a unique pair of intra-group symmetric �rst-
best e¤ort levels (e�I ; e

�
J). Moreover, the less productive player exerts less

e¤ort (i.e., fJ > fI � 0 implies e�J > e�I > 0):

The above proposition states that, in �rst-best, more productive agents
should exert higher e¤ort. Moreover, even if the less productive group of
agents is not productive at all, i.e. if fI = 0; it will be socially optimal to
induce him to exert positive e¤ort.
This implies that there will always be peer pressure in social optimum.

Notice that it would be possible for the principal to completely eliminate the
externality arising from peer pressure. She could simply require both types
of agents to exert identical e¤ort. Nevertheless, Proposition 1 tells us that
it would not be optimal for the principal to do so. The main reason is that
eliminating peer pressure would require identical e¤ort levels, eI = eJ : In
that case marginal cost would be the same for both groups of agents, while
peer pressure and hence marginal peer pressure would be zero. Therefore,
marginal cost cannot equate to expected marginal productivity for both group
of agents. Identical e¤ort levels can thus never be �rst-best.
We now give the proof of Proposition 1.
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Proof of Proposition 1. We �rst prove the statement regarding the rank-
ing of e¤orts.

(E¤ort-ranking) First, suppose fJ > fI � 0 and e�I = e�J . From Assump-
tion (P) it follows that P 0(e�I � e�J) = P 0(e�J � e�I) = P 0(0) = 0: Therefore, the
�rst-order conditions (5) reduce to fI = c0(e�I) and fJ = c0(e�J): Moreover,
e�I = e�J implies c

0(e�I) = c0(e�J) and hence

fI = c0(e�I) = c0(e�J) = fJ ;

which contradicts fJ > fI . Hence, we conclude that e�J 6= e�I :
Suppose now fJ > fI � 0 and that e�I > e�J were �rst-best e¤ort levels.

Then the principal could increase his pay-o¤ by inducing agents i = 1 and
j = n to switch e¤ort levels, i.e. be1 = e�J and ben = e�I (while bei = e�I for
i = 2; : : : ; k and bej = e�J for j = k + 1; : : : ; n� 1): For, it follows thatX

h2I[J

c(e�h) =
X
h2I[J

c(beh) andX
h2I[J

P (e�h � e��H) =
X
h2I[J

P (beh � be�H):
Moreover, 0 � fI < fJ and e�J < e�I imply fI(e

�
I�e�J) < fJ(e

�
I�e�J) and hence

f(e�I ; e
�
J)� f(beI ; beJ) = fIe

�
I + fJe

�
J � (fIe�J + fJe

�
I) < 0;

in contradiction to (e�I ; e
�
J) having been chosen optimally.

Finally, to show e�I > 0; notice that e
�
I = 0 would imply e

�
J 6= 0 (if not so

then e�J = e�I = 0 would imply that all but the �rst expression in (4) vanish
so that equation (4) could not be satis�ed). Hence

c0(e�I) + P 0(e�I � e�J)�
n� k

k
P 0(e�J � e�I) = P 0(�e�J)�

n� k

k
P 0(e�J) < 0: (6)

Here, the inequality holds true, because P 0(�z) � n�k
k
P 0(z) is decreasing in

z and equals zero for z = 0: From fI � 0; it hence follows that the left-hand
side of equation (5) is strictly positive, which yields a contradiction.

We now prove the statements regarding existence and uniqueness.

(Existence and Uniqueness) De�ne

'(eI ; eJ) := c0(eI) + P 0(eI � eJ)�
n� k

k
P 0(eJ � eI)

and

 (eI ; eJ) := c0(eJ) + P 0(eJ � eI)�
k

n� k
P 0(eI � eJ);

9



where in intra-group symmetric equilibria we have eI = eI and eJ = eJ :
Notice that '(eI ; eJ) is increasing in eI and decreasing in eJ , because

c0(y) is increasing in y and P 0(z) � n�k
k
P 0(�z) is increasing in z: Similarly,

 (eI ; eJ) is decreasing in eI and increasing in eJ : Moreover, by Assumptions
(C) and (P) both functions are di¤erentiable.
Given these de�nitions, we can write (5) equivalently as

'(eI ; eJ) = fI and

 (eI ; eJ) = fJ :

De�ne the functions eI(eJ) and eJ(eI) implicitly by

'(eI(eJ); eJ) = fI and  (eI ; eJ(eI)) = fJ ; respectively. (7)

By Assumptions (C) and (P), both functions are continuously di¤erentiable.
In order to establish existence of a unique solution to (5), it is hence su¢ cient
to show that eI(eJ) and eJ(eI) have a positive interception, ei(0) > 0; that
they intersect with the eI = eJ -line and that they have a slope less than one,
e0i(ej) < 1 (see also Figure 1).
First, to see eI(0) > 0; notice that (i) '(eI ; 0) is (strictly) increasing and

continuous in eI , (ii) '(eI ; 0) = 0 for eI = 0; and (iii) there exists be <1 such
that '(be; 0) > fI : By the intermediate value theorem there exists eI 2 (0; be)
such that '(eI ; 0) = fI : Uniqueness follows from monotonicity of '(eI ; 0):
(Observe that we can apply the same argument to any arbitrary eJ � 0: It
hence follows that the functions eI(eJ) and eJ(eI) are well de�ned.)
Second, the functions eI(eJ) and eJ(eI) intersect with the (eI=eJ)-line,

respectively, since eI = eJ implies '(eI ; eJ) = c0(eI) and  (eI ; eJ) = c0(eJ):
Consequently, the system (7) for eI = eJ reduces to c0(eI) = fI and c0(eJ) =
fJ : This system has a (�nite) solution because c0(�) is strictly increasing.
Third, the derivative e0I(eJ) can be calculated using the implicit di¤eren-

tiation theorem,

e0I(eJ) =
P 00(eI � eJ) +

n�k
k
P 00(eJ � eI)

c00(eI) + P 00(eI � eJ) +
n�k
k
P 00(eJ � eI)

:

Obviously, Assumptions (C) and (P) imply e0I(eJ) 2 [0; 1): Since the proper-
ties of eJ(eI) can be shown similarly, this completes the second part of the
proof. �

Insert Figure 1 about here

To shed light on the comparative statics of our model, the following propo-
sition establishes that the socially optimal e¤ort levels increase monotonically
in productivity.
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Proposition 2 First best e¤ort levels, e�I and e
�
J ; increase with each produc-

tivity, fI and fJ :

Proof. Suppose fJ > fI � 0: We prove the claim for e¤ort level e�I and
an increase in fI and fJ : Recall the functions eI(eJ) and eJ(eI) implicitly
de�ned in (7) and consider an increase in fI �rst. By de�nition, the function
eJ(eI) is not a¤ected by the increase in fI : On the other hand, the function
eI(eJ) now assigns a higher value to each �xed eJ � 0: One only has to see
that an increase in fI = '(eI ; eJ) implies a strictly higher value of eI for each
�xed eJ � 0; because '(eI ; eJ) is increasing in eI : Consequently, we have for
the �new�function eeI(eJ) that eeI(eJ) > eI(eJ); for all eJ � 0: Since eeI(eJ)
has a slope less than one, ee0I(eJ) < 1; there still exists a unique solution,
(e��I ; e

��
J ); and this has the property e

�
I < e��I and e�J < e��J :

Second, consider an increase in fJ : Similar to the above, it is now the
function eI(eJ) that is not a¤ected by this increase. The function eJ(eI)
assigns a higher value to each �xed eJ � 0; because  (eI ; eJ) is increasing
its second argument. Then the aforementioned graphical argument estab-
lishes existence and uniqueness of the new solution, (e��I ; e

��
J ); which has the

property e��J > e��I : �
To illustrate the e¤ect of increasing peer pressure and increasing cost,

respectively, we temporarily introduce a peer pressure parameter � > 0 and
a cost parameter  > 0 into the objective functions of the agents and the
principal:

max
eh�0

fAh + �hf(e1; :::; en)� c(eh)� �P (eh � e�H)g 8h 2 I [ J (agent):

max
�I ;�J

(
f(e1; :::; en)� 

X
h

c(eh)� �
X
h

P (eh � e�H)

)
(principal)

s:t: eh = eh(�I ; �J) h 2 I [ J

Note that doing so is without loss of generality, since the functions ec(eh) =
c(eh) and eP (z) = �P (z) satisfy Assumption (C) and (P), respectively, if and
only if the functions c(eh) and P (z) satisfy these assumptions. Therefore,
Propositions (1) and (2) and the results in the following section cover this
case.

Proposition 3 (i) The �rst-best e¤ort level of the less productive agents, e�I ;
increases in the peer pressure parameter �; while the �rst-best e¤ort level of
more productive agents, e�J ; decreases with �:
(ii) Both �rst-best e¤ort levels, e�I and e

�
J ; decrease with the cost parameter

:

Proof. See the Appendix. �
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4 First-Best Implementation

In this section we analyze the case of agency, i.e., the case where the principal
cannot write contracts directly on the e¤ort levels. We �rst show that for any
given incentives (�I ; �J) there exists a unique pair of e¤ort levels, (eI ; eJ);
which the agents will choose. Subsequently, we turn towards analyzing the
principals problem of determining the optimal incentives.

Proposition 4 Suppose the principal-agent problem satis�es Assumptions
(C) and (P). Then, for any given pair of incentives (�I ; �J) such that �I ; �J >
0; there exists a unique pair of e¤ort levels (eI ; eJ); eh � 0 8h 2 I [ J: Con-
sequently, the ei(�I ; �J) are well de�ned functions.

Proof. Fix �I ; �J > 0: Consider the agents��rst-order conditions. Using
the de�nitions provided in the proof of Proposition 1, one can rewrite these
conditions as

'(eI ; eJ) = �IfI and

 (eI ; eJ) = �JfJ :

Similar to the proof of Proposition 1, these conditions implicitly de�ne func-
tions eeI(eJ) and eeJ(eI) such that

'(eeI(eJ); eJ) = �IfI and

 (eI ; eeJ(eI)) = �JfJ :

The rest of the proof can be established along the lines of Proposition 1. �
How incentives relate to e¤ort levels, will be analyzed in Lemma 1 below.

At this stage we merely remark that the comparative statics properties of
the �rst-best analysis allows us to conclude that each e¤ort level increases
with each single incentive, �I and �J :
The following Theorem establishes that the principal can implement the

�rst-best solution. To this end she gives stronger incentives to the less pro-
ductive agents. More precisely, the less productive agents receive incentives
above the 100 percent level, while the more productive agents face incen-
tives strictly below 100 percent. In this regard notice that incentives of 100
percent (given to both types of agents) represent the �rst-best solution in
absence of peer pressure.

Theorem 1 Suppose the principal-agent problem satis�es Assumptions (C)
and (P). Then, the principal can implement the �rst-best e¤ort levels (e�I ; e

�
J)

such as characterized by equation (5). The implementation of this solution
requires that �I � 1 > �J :
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To prove the Theorem the following Lemma is helpful. It derives condi-
tions that provide the promised link between incentives and e¤ort levels. In
particular, it shows that the principal will always implement incentives that
induce more productive agents to exert higher e¤ort.

Lemma 1 Suppose the principal-agent problem satis�es Assumptions (C)
and (P). Then, (i) eI � eJ if and only if �IfI � �JfJ ; (ii) �IfI � �JfJ ;
(iii) eI 6= eJ ; and (iv) eI > 0: From (i) to (iii) it thus follows that eI < eJ :

Proof of Lemma 1. Statement (i) First, suppose eI � eJ and �IfI > �JfJ :
It follows that c0(eI) + P 0(eI � eJ) � c0(eJ) + P 0(eJ � eI); which implies a
contradiction because of c0(eI)+P 0(eI�eJ) = �IfI > �JfJ = c0(eJ)+P

0(eJ�
eI): To show the converse, suppose eI > eJ : It follows that c0(eI) + P 0(eI �
eJ) > c0(eJ) + P 0(eJ � eI): Because of the agents��rst-order conditions this
is equivalent to �IfI > �JfJ :

Statement (ii) Suppose �IfI > �JfJ (or equivalently eI > eJ): Then the
principal could induce two agents �one of each group, say i = 1 and j = n
�to switch e¤ort-levels by choosing �n = �IfI=fJ and �1 = �JfJ=fI : The
switch in e¤ort levels does neither a¤ect total cost nor total peer pressure,
but increases production. Hence �IfI > �JfJ cannot be optimal.
Statement (iii) If eI = eJ ; then peer pressure is zero for both agents, and

marginal costs are equal across players. Since marginal cost equals marginal
productivity, fI < fJ implies a contradiction.
Statement (iv). From statements (i) to (iii), it follows that eI < eJ .

Hence, P 0(eI� eJ) < 0: Then the �rst-order condition of agents from group I
implies c0(eI)� �IfI > 0: From �IfI � 0; it follows that c0(eI) > 0: Because
of c0(0) = 0; we obtain eI > 0. �
Proof of Theorem 1. Inserting the agents��rst-order conditions given in
equation (2) into the �rst-order conditions that characterize �rst-best e¤ort
levels (5) yields

(1� �I)fI = �
n� k

k
P 0(e�J � e�I) 8i 2 I

(1� �J)fJ = �
k

n� k
P 0(e�I � e�J) 8j 2 J (8)

These equations allow us to calculate the pair of incentives (�I ; �J) that
implements �rst-best. Notice that the corresponding pair of �rst-best e¤ort
levels is uniquely determined because of Proposition 4. Since from Lemma
1 it follows that e�J > e�I ; we have P

0(e�J � e�I) � 0 > P 0(e�I � e�J): Thus, (8)
implies �I � 1 > �J : �
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5 Conclusion

We have investigated a principal-agent model, where one principal o¤ers
incentive contracts to two groups of agents with di¤erent productivity. It
turns out that it is always socially optimal to induce the more productive
agents to exert higher e¤ort. We then established that it is indeed possible
for the principle to implement �rst-best. To this end, however, the principal
has to give lower incentives to the more productive agents than she gives to
the less productive agents.
To understand the intuition behind these results note that while it is

the case that peer pressure can encourage additional e¤ort from co-workers,
peer pressure also imposes costs on the other workers. These costs must be
compensated by the principal. Hence, peer pressure causes the principal to tie
the e¤ort levels of the agents more closely together relative to the case where
peer e¤ects are absent. In a situation with agency, i.e., when the principal
cannot write contracts directly on the agents�e¤ort level, the principal�s only
way to tie the e¤ort levels of di¤erent agents together is by using economic
incentives. Since the agents respond by exerting more e¤ort when exposed to
stronger incentives, the principal induces more e¤ort from the low-productive
workers by increasing their incentives. Similarly, the principal reduces the
incentives of the high-productive workers compared with a situation without
peer e¤ects, entailing that these agents choose lower e¤ort in equilibrium.
So far, we have chosen to set aside issues related to risk-sharing between

the principal and the agents. Our motivation for doing so was to highlight the
e¤ects of peer pressure on the optimal incentives. This allowed us to compare
the optimal incentives to the one hundred percent compensation rule that
is obtained in the principal-agent literature when risk-neutral agents face a
linear compensation scheme. We now comment on how our main result will
change if the agents are risk-averse.
One way to introduce risk-aversion in our model is to follow Holmstrom

and Milgrom (1991) and assume that the agents�utility functions are expo-
nential and that all random variables are normally distributed. With these
assumptions and with linear compensations, the agents�certainty equivalence
utility are as given in equation 1 with an additional term subtracting the risk
cost. By maximizing the principal�s objective function, and taking the risk-
averse agents�response into account, we get the following well known result
for the case where peer pressure is absent: The principal chooses to lower
the incentives below the 100 percent rule. The reason is simply that stronger
incentives expose the agents to more risk, and this is costly for the principal
which has to compensate them for their risk costs. Suppose now that the
principal has to decide on the incentives taking both peer e¤ects and risk

14



into account. First of all we see that there is no con�ict between peer pres-
sure and risk costs for the high-productive agents in that both e¤ects make
it optimal to lower these agents�incentives. For the low-productive group,
however, the principal has to realize that strengthening their incentives af-
fects her utility in two opposite ways. First, stronger incentives reduces peer
pressure. This is bene�cial for the principal. Secondly, stronger incentives
expose these workers for more risk which has to be compensated by the prin-
cipal. Hence we see that the strength of the incentives will depend on the
relative strength of peer pressure and risk-averion. If the former e¤ect dom-
inates the results in this paper continue to hold since the gain of reducing
peer pressure outweighs the cost of risk compensation. On the other hand, if
risk aversion is relatively strong compared to peer pressure, the principal will
set incentives mainly to correct for the risk cost. For su¢ ciently, relatively
strong risk aversion our main result will not hold true anymore.
Finally, we note that social welfare was lower in the presence of peer

pressure than in its absence. With regard to the organization of teams, this
implies that one should organize teams such that agents of similar produc-
tivity work in the same team. Whether a team as such remains an optimal
form of work organization in the presence of peer pressure and under which
conditions this is the case, is a question we investigate in another paper.
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Appendix
Proof of Proposition 3. To start with, observe that �rst-best e¤ort

levels are characterized by the following pair of equations:

fI = ' (eI ; eJ ; ; �) := c0 (eI) +
�

k
[kP 0(eI � eJ)� (n� k)P 0 (eJ � eI)]

fJ =  (eI ; eJ ; ; �) := c0(eJ) +
�

n� k

�
(n� k)P 0(eJ � eI)�

k

n� k
P 0(eI � eJ)

�
:

Denote the corresponding solution by (e�I (; �) ; e
�
J (; �)) :

First, we analyze the e¤ect of increasing peer-perssure (� ") : To this end,
de�ne

M =

 
@'
@eI

@'
@eJ

@ 
@eI

@ 
@eJ

!
and M1 =

 
�@'

@�
@'
@eJ

�@ 
@�

@ 
@eJ

!
:

Then by the Implicit Function Theorem, @eI
@�
can be expressed as @eI

@�
= detM1

detM
:

First we note that

detM =
@'

@eI

@ 

@eJ
� @'

@eJ

@ 

@eI

=

�
c00(eI) + �

1

k
[kP 00 (eI � eJ) + (n� k)P 00 (eJ � eI)]

�
�
�
c00(eJ) + �

1

n� k
[(n� k)P 00 (eJ � eI) + P 00 (eI � eJ)]

�
��2 1

k (n� k)
[kP 00 (eI � eJ) + (n� k)P 00 (eJ � eI)]

= 2c00(eI)c
00(eJ) + �

1

n� k
c00(eI) [(n� k)P 00 (eJ � eI) + kP 00 (eI � eJ)]

+�
1

k
c00(eJ) [(n� k)P 00 (eJ � eI) + kP 00 (eI � eJ)]

> 0:
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Second, we determine detM1:

detM1 = �
@'

@�

@ 

@eJ
+
@'

@eJ

@ 

@�

= �
�
1

k
[kP 0 (eI � eJ)� (n� k)P 0 (eJ � eI)]

�
�
�
c00(eJ) + �

1

n� k
[(n� k)P 00(eJ � eI) + kP 00(eI � eJ)]

�
+

�
��1

k
[kP 00 (eI � eJ) + (n� k)P 00(eJ � eI)]

�
�
�

1

n� k
[(n� k)P 0 (eJ � eI)� kP 0 (eI � eJ)]

�
= c00(eJ)

1

k
[(n� k)P 0 (eJ � eI)� kP 0 (eI � eJ)]

> 0:

It thus follows that
@eI
@�

=
detM1

detM
> 0:

To see @eJ
@�

< 0; we combine the two �rst-order conditions to obtain

fI = c0 (eI) +
�

k

�
�n� k

�
[fJ � c0 (eJ)]

�
:

This is equivalent to

kfI + (n� k) fJ = kc0 (eI) + (n� k) c0(eJ): (9)

Notice that the left hand side of (9) does not depend on � > 0: Therefore,
if an increase in � entails an increase in eI this implies a decrease in eJ (and
vice versa), that is

@eI
@�

> 0, @eJ
@�

< 0;

which completes the proof of @eJ
@�

< 0:

Second, we investigate the e¤ect of increasing cost ( ") : Similarly to the
above, we can express @eI

@
and @eJ

@
as

@eI
@

=
detN1
detM

and
@eJ
@

=
detN2
detM

;
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respectively, where

N1 =

 
�@'
@

@'
@eJ

�@ 
@

@ 
@eJ

!
and N2 =

 
@'
@eI

�@'
@

@ 
@eI

�@ 
@

!
;

andM is de�ned as above. Recalling detM > 0; we have to show detN1 < 0
and detN2 < 0:

detN1 = �
@'

@

@ 

@eJ
+
@'

@eJ

@ 

@

= c0(eI)

�
c00 (eJ) +

�

n� k
[(n� k)P 00 (eJ � eI) + kP 00 (eI � eJ)]

�
+
h
��
k
[kP 00 (eJ � eI) + (n� k)P 00 (eJ � eI)]

i
c0(eJ)

< 0;

detN2 =
@'

@eI

@ 

@
+
@'

@

@ 

@eI

= �
h
c00(eI) +

�

k
[kP 00 (eI � eJ) + (n� k)P 00 (eJ � eI)]

i
c0(eJ)

+c0(eI)

�
�

n� k
[(n� k)P 00(eJ � eI) + kP 00 (eI � eJ)]

�
< 0:

Both inequalities hold true because of c0(�) > 0; c00(�) > 0; and P 00 � 0;
respectively.
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