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Background  

Endometrial cancer (EC) is the most common gynecological cancer in industrialized countries 

and the incidence is increasing [1]. Although EC is formally surgiopathologically staged 

according to the International Federation of Gynaecology and Obstetrics (FIGO) staging 

system [2], imaging plays a central role in the management of EC patients. Preoperative 

imaging findings guide primary surgical treatment and are especially useful to stratify high-

risk patients for lymphadenectomy, which is a major clinical challenge [3].  

Transvaginal ultrasound and/or magnetic resonance imaging (MRI) is typically performed 

preoperatively to assess local tumor extent. Computed tomography (CT) alone or CT 

combined with positron emission tomography (PET-CT) are useful to assess both abdominal 

spread to pelvic- and paraaortic lymph nodes as well as distant spread [4]. PET imaging in 

oncology is most often performed using 18F-labeled glucose, fluorodeoxyglucose (FDG). 

Malignant cells are metabolically characterized by elevated energy demands and will 

normally have an increased uptake of glucose. Cancers will therefore typically exhibit high 

uptake of FDG generating contrast in PET images. In addition to elevated FDG uptake in 

metastatic lymph nodes, primary EC are also typically highly FDG avid [5].  

 

Clinically, PET images are usually acquired by conventional static scanning, typically one 

hour post-injection for FDG, and analyses are based on the semi-quantitative and variation-

prone parameter standardized uptake value (SUV) [6, 7]. In order to delineate and segment a 

tumor from normal surrounding tissue a fixed threshold of >2.5 SUV is typically applied to 

include all putative tumor voxels in a volume of interest (VOI). Several additional 

segmentation methods exists including manual-, boundary and region-based techniques and 

the chosen approach will be dependent for the outcome [8]. In EC the 2.5 SUV threshold-

based method is commonly used, and the mean and maximum uptake is reported 

(SUVmean/SUVmax) though the documented usefulness of these parameters is limited [9].  

Intrinsically, one of the main advantages of PET technology is the possibility to perform 

absolute quantification by dynamic imaging. Pharmacokinetic parameters derived from 

dynamic imaging can potentially yield functional tumor information beyond that represented 



by SUV and better characterize tumor heterogeneity and monitor therapeutic response [10]. 

Patlak modelling, a linear regression analysis technique suited for PET tracers with 

irreversible uptake like FDG, has shown to be a useful model in the analyses of dynamic PET 

in oncology [11].  

Preclinical imaging of patient-derived tumor xenograft (PDX) mouse models represents a 

useful tool for unravelling new imaging biomarkers for prediction and evaluation of treatment 

response that eventually can be translated into the clinic [12, 13]. We have established a 

multimodal imaging platform similar to that routinely employed at EC primary diagnostic 

work-up in the clinic, and we have shown increased FDG uptake in EC PDX mouse models 

using small-animal PET [14]. Advanced image analysis of tumors in clinically relevant 

animal models using advanced imaging methods represents an ideal research platform for 

testing and validation of imaging cancer biomarkers prior to potential implementation in the 

clinic.   

Objectives 

In a recent preclinical EC imaging study from our group (Espedal et al, manuscript in 

preparation) we found that the clinical >2.5 SUV segmentation threshold may be suboptimal 

for mice. We want to explore alternative segmentation methods in a systematic manner to 

develop an optimal method for our PDX models. Furthermore, we want to investigate if 

parameters derived from dynamic imaging outperforms that of static parameters for capturing 

clinically relevant in tumor characteristics and predicting treatment response.  

Main aims: 

1) We will optimize and standardize the tumor segmentation protocols in our mouse 

model database of dynamic FDG-PET (n>200) in order to provide a basis for future 

PET image analyses.  

2) Using the method obtained in 1), we will compare dynamic and static image 

parameters. Static parameters will include SUVmean, SUVmax, metabolic tumor volume 

(MTV) and total lesion glycolysis (TLG). Dynamic images will be analyzed using 

Patlak-modeling and influx of FDG (Ki) will be calculated.  

3) Compare static and dynamic image parameters to assess treatment response in a subset 

of mice that has received chemotherapy following tumor implantation.  

 

 



Material and methods 

This retrospective study will include >200 mice with orthotopically implanted PDX EC of 

different stage and histology. All mice have undergone a one-hour dynamic FDG PET-CT 

scan between 2013 and 2020. A cohort of mice within the database have received 

chemotherapy and this treatment study will also be included in the analyses.  

Prior to image analysis all PET acquisitions will be reconstructed into standardized time 

frames using Nucline software. For the segmentation study, the last 30 minutes of the 1-hour 

scan (static) will be used. Advanced image analysis of the dynamic FDG-PET scans will be 

carried out using two different software: Interview Fusion (visualization, segmentation) and 

PMOD (segmentation, kinetic modeling). 

Statistical analysis will be carried out using SPSS and Prism.  

The student’s role and plan for education 

The student is expected to work independently following software training by the main 

supervisor. The results will be discussed with both supervisors and within the research group. 

The candidate will start her full-time research year autumn 2021, but the initial training can 

start earlier as part of the candidate’s elective course spring 2021.  

Project plan 

 

 

 

 

 

 

 

 

 

  

 2021 2022 2023 

1 2 1 2 1 2 

Software training and literature search  x      

Image reconstruction and analysis   x x    

Data analysis and structuring of results    x x    

Manuscript preparation    x x x  

Publication       x 



Planned publication 

The goal of this project is to yield novel results that may be presented in a manuscript that 

will be submitted to an international, peer-reviewed journal specializing in preclinical 

imaging. It is realistic that a first draft can be started towards the end of the first research 

year. Follow-up studies implementing results from the primary work are possible and 

dependent on whether the research student is interested in pursuing a PhD afterwards. 

Education 

The student will enroll in the mandatory courses MEDMET1 and FORMIDL901. 

Additionally, it is recommended that the student sign up for LAS 301/302 (Course in 

animal research) as the material in this project is based on mouse studies. Additional 

courses such as a statistics course (Legeforeningen online course) and a seminar series for 

research dissemination (CCBIO901) is also encouraged to sign up for.  

 

Approvals 

All animal experiments and the images that were collected for use in this study has been 

approved by Mattilsynet/FOTS (FOTS ID: 4036, 6080, 6710, 6735, 18798)  

 

Finance 

Expenses related to imaging software licenses and data analyses will be financed by the 

project (Precision imaging in gynecologic cancer; headed by Prof. Haldorsen) at Mohn 

Medical Imaging and Visualization Centre (MMIV) to which the research student will be 

affiliated. The group will also cover potential costs associated with compulsorily or 

elective courses to attend when regarded necessary. 
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