

12+3 min

Faculty of Technology, Natural Sciences, and Maritime Sciences

Department of Process, Energy, and Environmental Technology

Campus Porsgrunn

Open-Source Tools for Advanced Modeling of Hydrogen Explosions and Safety Insights

HySchool Days 2025 Porsgrunn, April 2th , 2025

PhD Student: **Petar Bosnic**, USN

Process Safety, Combustion and Explosion Research Group

Main Supervisor: Professor Knut Vågsæther, USN Co-Supervisor: Associate Professor Mathias Henriksen, USN

INTRODUCTION

1

Event Tree Analysis of Potential Consequences from Loss of Containment in Hydrogen Systems

Deflagration-to-Detonation Transition

• Detonation research began in the late 19th centuary

reactants

- Chapman–Jouguet (CJ) theory
- Zel'dovich-von Neumann-Döring (ZND) model
- Qualitative understanding of transition to detonation
 - "Explosion within an explosion"

Numerical DDT

- Extremely high spatial and temporal resolution
 - 20 computational cells per half-reaction length
- Safety analyses: macroscopic effects such as flame speeds and pressure loads on structures
- *Vågsæther K. et al. (2007)* introduced the methodology for modeling DDT on course meshes

K Vaagsaether, V Knudsen, and D Bjerketvedt. "Simulation of Flame Acceleration and DDT in H2-air Mixture with a Flux Limiter Centered Method". International Journal of Hydrogen Energy 32.13 (Sept. 2007), pp. 2186–2191.

• Ettner F. et al. (2014) implemented the modelling approach in OpenFOAM

Florian Ettner, Klaus G. Vollmer, and Thomas Sattelmayer. "Numerical Simulation of the Deflagrationto-Detonation Transition in Inhomogeneous Mixtures". In: Journal of Combustion 2014 (2014), pp. 1–15.

Oran, E. S., & Gamezo, V. N. (2007). Origins of the deflagration-to-detonation transition in gas-phase combustion. **Combustion and Flame**, 148(1–2), 4–47.

2

Problem statement

Main objective

Develop a predictive model for deflagration-to-detonation transition (DDT) to improve consequence analysis in hydrogen safety applications.

Secondary Objectives

- Develop a CFD solver in **OpenFOAM** to simulate flame acceleration (FA) and DDT in a single framework
- Accurately predict DDT in homogeneous and inhomogeneous gas mixtures using coarse meshes
- Ensure **scalability** and **applicability** to full-scale hydrogen safety scenarios

3

Methodology

Numerical Modeling

- Computational Fluid Dynamic (CFD) software Open ∇ FOAM
 - Compressible *Navier-Stokes Equations*

Criteria	Pressure-based Solvers (SIMPLE/PISO/PIMPLE)	Density-based Solvers (Riemann solvers)
 Flow Regime	Incompressible to mildly compressible flows	Compressible flows, shocks, supersonic/hypersonic conditions
Equation Coupling	Weak coupling of pressure-velocity equations	Fully coupled solving of conservation equations
 Numerical Stability	Implicit(semi) Solvers → Stable for larger time- steps	Explicit solvers \rightarrow CFL limited \rightarrow smaller time- steps
Computational Cost	Lower computational cost per iteration	Higher computational cost per iteration
 Shock Handling	Inadequate	Handles shocks and discontinuities robustly
OpenFOAM 9 default solvers	Combustion: XiFoam, reactingFoam,	Combustion: no default

Libraries developed by *blastFoam**

Combustion Model

S. Browne et al. SDToolbox - Numerical Tools for Shock and Detonation Wave Modeling, Explosion Dynamics Laboratory. Explosion Dynamics Laboratory, 2021.

Validation Case and Results

Experimental and Numerical Setup

Experimental Apparatus:

- 1-meter rectangular open-ended explosion chamber
- 40 (18x650 mm) cylindrical obstacles \rightarrow BR = 0.77
- Gas Supply System (premixed H2-air)
- Spark Ignition System and Porous Lid System
- 4 Pressure Transducers (Kistler 7001 and 603B)
- High Speed Cameras:
 - Photron SA-1 (Flame Luminosity): 8000 fps
 - Kirana (Schlieren setup): 500 000 fps
 - Photron SA-Z (Flame Luminosity): 120 000 fps
- Synchronus Triggering System and Data Acquisition

Numerical Domain and BC:

- 2D domain (1000x116 mm)
- Static and dynamic mesh
- Boundary conditions:
 - WALL: non-slip adiabatic wall
 - OPEN: total pressure

Computational Fluid Dynamic Solver:

- OpenFOAM 9: MMXFOAM
- Thermopysical and Transport properties:
 - Gas Composition: Homogeneous φ = 1.1 H2-air generated with *mech2Foam*
- Turbulence model: k-omega SST
- Compressible solver: **HLLC** (shock capturing)
- <u>Combustion model:</u>
 - **Deflagration** + **Detonation** source term

Auto-ignition

Т

2000

2500

3000

3.5e+03

1500

2.9e+02

Y

ZX

1000

15/20

FUTURE DEVELOPMENT

Conclusion

Conclusion

- Hydrogen Technologies Low Carbon Technologies
- Risk Assessment of Hydrogen Technologies
- Consequence Analysis Gas Explosions
- Research Goals:
 - Develop a CFD solver in **OpenFOAM** to simulate flame acceleration (FA) and DDT in a single framework
 - Solver developed for safety studies and engineering purposes
 - Accurately predict DDT in homogeneous and inhomogeneous gas mixtures using coarse meshes
 - Ensure **scalability** and **applicability** to full-scale hydrogen safety scenarios

PHYDROGEN

Acknowledgements:

FME HYDROGENi is financed by its industry partners and the Norwegian government through the Norwegian Research Council's Centres for Environment-friendly Energy Research programme (FMETEKN, project no. 333118).

> Norwegian Centre for Environmentfriendly Energy Research

() SINTEF

DNTNU

unnskap for en bedre verde

PHYDROGEN

UNIVERSITETET I OSLO

UiT Norges arktiske universitet

Institute for Energy Technology

> Universitetet i Sørøst-Norge

Reach me at:

in

petar.bosnic@usn.no

Process Safety, Combustion and Explosion Research Group

USN, Campus Porsgrunn

Research Group Web:

41

University of South-Eastern Norway