IFE

Renewable Energy Water Electrolysis High-Pressure PEM Water Electrolysis

HySchool Days 2025 Porsgrunn, 1-2 April 2025

Øystein Ulleberg Chief Scientist IFE | Professor UiO

Contents

- 01 Introduction
- 02 Motivation & Background
- 03 PEM Water Electrolyzer Stack Testing
- 04 Modeling & Experimental Results
- 05 Conclusions & Future Work

Institute for Energy Technology

- Private research foundation (established 1948)
- Research on hydrogen storage materials from 1950s -
- Research on applied hydrogen systems from 1990s

OPEN IFE #3

Daughter Companies

Agilera Pharma AS

IFE Invest AS

R&D Nuclear

Technology and Property

Nuclear Operations

Modelling

- Materials, Components & Key Technologies
- Hydrogen Systems & Processes
- Energy Management and Power Controls Systems

RE/H2 System Research at IFE since 1995

- 1995: Hydrogen energy systems modeling and validation of 7 bar Alkaline Electrolyzer model (PhD Ulleberg, with data from PHOEBUS-plant, FZ Jülich, Germany)
- 2000: Photovoltaic (PV) Hydrogen Laboratory System with small-scale 15 bar PEM Water Electrolyzer (from Fraunhofer ISE) tested at IFE (RESYS)
- 2004: Design of World's first Autonomous Wind/Hydrogen Demonstration (Utsira island) using 15 bar Alkaline Water Electrolysis from Norsk Hydro
- 2005: Detailed Wind / Water Electrolysis Power and Control Systems in Matlab Simulink modeling tools developed at IFE for Statkraft
- 2008: Testing of small-scale atmospheric PEM Water Electrolyzer Prototype (from Norsk Hydro) in Renewable Energy System Laboratory at IFE (REELYPEM)
- 2020: Commissioning and testing of 200 bar differential pressure PEM Water Electrolyzer System Laboratory designed, built, and operated at IFE (Hynor/NFCH)
- 2020: High-pressure PEM Water Electrolysis Modeling (MoZEES)
- 2023: PEM water electrolysis system modeling (HYDROGENi)
- 2023: Design and operation of Renewable Energy based PEM Water Electrolysis Systems for Industrial Applications (REHSYS)

Hynor – IFE's Hydrogen Technology Test Center

Norwegian Fuel Cell and Hydrogen Centre Open Research Infrastructure

- PEM Fuel Cell System Laboratory
- PEM Water Electrolysis System Laboratory
- IFE Hynor (past & present)
 - Sorption Enhanced Reforming (ongoing)
 - NH3-cracking & purification (ongoing)
 - Hydrogen Refueling Station (2011 2021)
 - Solid Oxide Fuel Cells (2014 2016)

Motivation (for pressurized systems)

- Reduce cost and complexity of supplying high-pressure RE-based hydrogen
- Comparison of high-pressure PEMWE vs. conventional PEMWE + mechanical H2-compressor

Background

- Techno-economic study: PEM water electrolysis up to 200 bar can be cost-effective
- Suitable for industrial applications that require 80 200 bar hydrogen

High-Pressure PEMWE Test Rig – Stack & System

Stack Design:

- Prototype/reference stack
- Reinforced membrane with recombination catalyst
- Electrode area: 86 cm²
- No. cells in series: 34 cells
- Max. pressure: 350 bar

Stack Operation:

- Current: 160 A (1.86 A / cm²)
- H2-production: 2.1 Nm³/h
- Max. pressure: 200 bar

High-Pressure PEM Water Electrolysis – System Concept

 O_2 vent

Ulleberg Ø. (2019) High Differential Pressure PEMWE System Laboratory, In Proceeding of EFCF – Fuel Cell, Electrolyzers H2 Processing Forum, 2-5 July, Luzern

High-Pressure PEMWE – Safety Systems on H₂-side IFE OPEN #11 Differential pressure sensor 08 CV-12 Back pressure regulator C4> E-04 Check valve 6mm **C3** Ŵ CV-08 2-6 Nm3/h H2 Ta-T To H₂ vent 03 H_2O/H_2 PT Separator X 6mm CV-03 HV-22 12mm Ta-06 LT) 05 R Waste N₂ supply

Ulleberg Ø. (2019) High Differential Pressure PEMWE System Laboratory, In Proceeding of EFCF – Fuel Cell, Electrolyzers H2 Processing Forum, 2-5 July, Luzern

High-Pressure PEMWE – Safety Systems on O₂-side

Hydrogen Safety

• **Reverse flow** of **H2** through membrane to **O2 side** during **ramp down** of stack power

Water Management

- Water transport through membrane from anode to cathode decreases with increased pressure
- Lower humidity in produced H2 → **Reduced need for H2 drying**

Hancke R., Bujlo P., Holm T., Ulleberg Ø. (2024) High-pressure water electrolyzer performance up to 180 bar differential pressure, Journal of Power Sources, Volume 601, 2024, 234271

High Pressure PEM Water Electrolysis Performance

Pressure

- Increased Pressure → Increased Energy Cost
- e.g., from **30** to **150 bar** \rightarrow ca. **2 kWh/kg**_{H2}

• Temperature

- Increased Temperature \rightarrow Reduced Energy Cost
- e.g., from 50 to $80^{\circ}C \rightarrow ca. 4.4 \text{ kWh/kg}_{H2}$

Hancke R., Bujlo P., Holm T., Ulleberg Ø. (2024) High-pressure water electrolyzer performance up to 180 bar differential pressure, Journal of Power Sources, Volume 601, 2024, 234271

Stack Voltage vs. Current Density (from Modeling)

IFE

OPEN

#16

Hancke R., Bujlo P., Holm T., Ulleberg Ø. (2024) High-pressure water electrolyzer performance up to 180 bar differential pressure, Journal of Power Sources, Volume 601, 2024, 234271

Experimental vs. Modeling Results

Deviations from Nernst equation observed

50°C theoretical

50°C measured

80°C theoretical

80°C measured

30-100

Compression (low-high) / bar

30-150 30-190

3.0

2.5

2.0

1.5

1.0

0.5

0.0

5-30

7

Compression loss / kWh kg H_2^{-1}

Deviations due to ohmic or kinetic overpotentials?

OPEN

#17

Compression (low-high) / bar

Summary & Conclusions

Hydrogen Compression Costs

 Electrochemical compression of hydrogen in PEMWE systems can be cost effective up to 80-200 bar

- PEMWE System Laboratory at IFE Hynor
 - Test stacks up to 200 bar and 33 kW
 - Test control strategies wrt. efficiency, safety, and stack durability

PEMWE Stack Testing

- Testing & characterization from 5-180 bar @30, 50, and 80°C
- Loss in efficiency from 30 to 150 bar: ca. 2 kWh/kg_{H2}
- Water drag (anode to cathode) from 30 to 150 bar: 50% reduction
- Safe operation (low H₂ in O₂): 25% power turn down possible @150 bar

Outlook

REHSYS – New project on Renewable Energy based PEM Water Electrolysis

PhD study by Amalie Møller University of Oslo

Acknowledgements

Key **Researchers** at IFE on **PEM Water Electrolysis**:

Prof. Øystein Ulleberg Dr. Ragnhild Hancke Dr. Thomas Holm Dr. Thulile Khoza Dr. Piotr Bujlo

Ragnhild

Thomas

Piotr