Combustion instability in future hydrogen combustors for power generation applications

Introduction

My work is investigating the instability of hydrogen combustion inside the gas turbine systems. The 'FlameSheet' is a versatile gas turbine combustor that can accommodate various fuel types. Pressure and heat release fluctuations are the primary factors of combustion instability, which can potentially damage the combustor.

Primary objective

 Analyzing the dynamics of 'FlameSheet' combustor model system which is relevant to combustion instability

Secondary objectives

 Analyzing the resonance frequency and vortex shedding of the 'FlameSheet' combustor model system.

Norwegian Research School on Hydrogen and Hydrogen-Based Fuels

Recent Progress Non-Reactive flow analysis

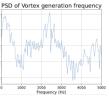
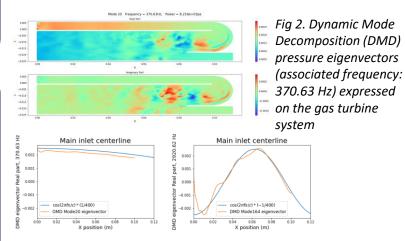
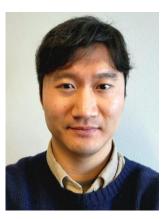



Fig 1. Vortex generation analysis; Left-Location of vortex generation, Right-Pressure Power Spectrum Density measured at vortex generation point

Fig 3. Acoustic wave observed at Main inlet centerline; Left-Mode 20 associated with 370.63 Hz, Right-Mode 164 associated with 2920.62 Hz

NTNU

Norwegian University of Science and Technology


Jiyong Alex Shin

PhD candidate at NTNU

Related projects: LowEmission , Carbon-free firing of gas turbines

MSc. Energy and Environment Technology from University of Southeastern Norway

BSc. Mechanical Engineering from Kyushu University

Estimated progress of the PhD project:

Just started	< 50 %	> 50 %	Almost done 😊
		-	

Publications

- Shin J., Henriksen M., Bjerketvedt D., Hydrogen and Ammonia Combustion (Master's thesis)
- M.Ibrahim O.1, Shin J.1, Sikka R.1, Hansen P.M.1, Vågsæther K.1, Experimental study on hydrogen pipeline leakage: Negative pressure wave characteristics and inline detection method (Progress)

