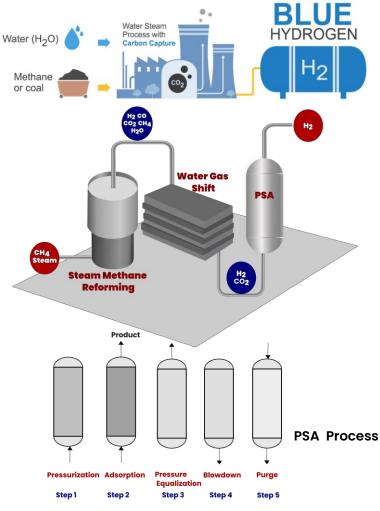
Decarbonizing H₂ Production in the Green Transition

Introduction

In 2022, 62 % of global hydrogen was produced from natural gas without carbon capture, utilization, and storage[1]. Steam Methane Reforming (SMR) with water gas shift which is the main process of H₂ production from natural gas, yields a product composition of 61% H₂, 19% CO₂, and 20% H₂O excluding the impurities [2]. It is essential to capture and store the produced CO₂ to produce blue hydrogen until the green transition takes over [3]. For H₂ to be utilized as a fuel with high energy density, the H₂ gas product mixture needs to be treated to produce high-purity H₂. The end-user applications such as different fuel cells, demand H₂ purities of 99.97% - 99.9995%. Therefore, the separation and purification unit should deliver H₂ at the highest recovery and highest purity with minimal energy input.

The future perspectives include enhancing the affinity of adsorbent materials for CO₂ to improve selectivity with better adsorption capacity and improving the material stability towards water and impurities. These could be achieved by modifying the surface area, pore sizes, and functionality of the materials.


Primary objective

 Investigating the potential of porous materials in gas separation.

Secondary objectives

School.no

- Developing PSA, TSA, and absorption-based systems using porous materials for carbon capture minimizing the drawbacks in current technologies.
- Purification and separation of gases such as hydrogen using the developed method.

Universitetet i Stavanger

John Senith Ravishan Fernando¹

PhD Candidate, MSc. in Environmental Engineering – University of Stavanger, Norway, BSc. in Chemical & Process Engineering–University of Moratuwa, Sri Lanka.

Supervised by:

Dr. Sachin Maruti Chavan¹ Prof. Bishnupada Mandal²

Affiliations:

¹Functional materials and process chemistry (FUMAPRO) group Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036 Stavanger, Norway.

²Department of Chemical Engineering Indian Institute of Technology, Guwahati, India

Project: New Porous Liquids for Gas Separation and Carbon Capture.

Funded by Norwegian Research Council.

Estimated progress of the PhD project:

Just started	< 50 %	> 50 %	Almost done 🕲

Reference

- IEA (2023), Global Hydrogen Review 2023, IEA, Paris https://www.iea.org/reports/global-hydrogenreview-2023, Licence: CC BY 4.0
- Lei, L., Lindbråthen, A., Hillestad, M., & He, X. (2021). Carbon molecular sieve membranes for hydrogen purification from a steam methane reforming process. *Journal of Membrane Science*, 627. https://doi.org/10.1016/j.memsci.2021.119241
- Noussan, M., Raimondi, P. P., Scita, R., & Hafner, M. (2020). The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective. Sustainability, 13(1). <u>https://doi.org/10.3390/sul3010298</u>

Norwegian Research School on Hydrogen and Hydrogen-Based Fuels