Magnetocaloric Metal-oxides for Efficient H₂ Liquefaction

Introduction

- Storage and transportation of H₂ are key challenges in the hydrogen value chain.
- Liquefaction by cooling down to 20 K (-253 °C) is a promising solution, but highly energy intensive with today's technology.
- Magnetocaloric cooling uses magnetic materials and strong magnetic fields to achieve an up to 50 % higher energy efficiency.

Primary objective:

To identify and optimize promising materials for magnetocaloric H₂ liquefaction

Secondary objectives:

- Identify design principles for magnetocaloric materials
- Find viable and scalable production methods

School.no

Norwegian Research School on Hydrogen and Hydrogen-Based Fuels

Magnetocaloric cooling principles

- Transitions between ordered and disordered magnetic states are used to store potential/thermal energy
- Application or removal of an external magnetic field is used to trigger these transitions, leading to cooling or heating of the material.

OF OSLO

Josef Kosler

Affiliations: University of Oslo, Institute for Energy Technology

Related projects: HYDROGENi

Research interests: energy materials, structural characterization and optimization, hydrogen liquefaction, magnetocaloric materials

Background: Nanoscience and materials chemistry

Estimated progress of the PhD project:

Just started	< 50 %	> 50 %	Almost done 🕲
			•

Project future

UNIVERSITY OF OSLO

- Varying composition and structural defects:
 - Optimize the cooling temperature range
 - Maximize cooling effect (J/kg)

