Green Hydrogen/Bio-Hydrogen Production with Microbial Electrolysis Cells (MECs)

Bio-Hydrogen yield in MECs with various substrates				
Substrate	Predominant microorganisms	Biohydrogen production	Reference	
Palm oil mill effluent	Geobacter, Pseudomonas sp	1.16 m3 H ₂ /m ³ d	(Chandrasekh ar et al., 2022	

Lignocellulosic hydrolysate	Enterococcus spp.	10.9 mol H ₂ /mol of glucose	(Wang et al., 2021)
Palm oil mill effluent	Geobacter sp., Desulfovibrio sp., and Thermoanaerobacterium sp.	134 ml- H ₂ /gCOD	(Khongkliang et al., 2019)
Crude glycerol	Enterococcus sp., Acetobacterium sp., and Geoalkalibacter sp	0.46 LH ₂ /L/d	(Badia- Fabregat et al., 2019)

Aritro Banerjee

Affiliation: UiT The Arctic University of Norway

Department of Building, Energy and Material Technology

Aritro Banerjee is a Chemical Engineer with expertise in environmental science, water treatment technologies, design and process optimization, and microbial fuel cells (MFCs). As a PhD researcher at UiT, The Arctic University of Norway, his work focuses on developing MFC technology for wastewater treatment and energy recovery. His background includes industrial wastewater treatment process design, community drinking water treatment systems, and industrial production, where he has worked as a shift supervisor. Additionally, he has been involved in learning about Recirculating Aquaculture Systems (RAS) projects.

Aritro has contributed as a researcher to the SPRING project, focusing on water treatment technologies, and is currently working on the ENFORCE project.

Estimated	progress	of the	PhD	project:
-----------	----------	--------	-----	----------

Just started	< 50 %	> 50 %	Almost done 🕲

Publications

- 1. Role And Important Properties Of A Membrane With Its Recent Advancement In A Microbial Fuel Cell, Banerjee A, Calay Rk, Eregno Fe .Energies. 2022;15(2). Doi:10.3390/En15020444
- 2. Review On Material And Design Of Anode For Microbial Fuel Cell Banerjee A, Calay Rk, Mustafa M, Energies. 2022;15(6):2283. Doi:10.3390/En15062283

Norwegian Research School on Hydrogen and Hydrogen-Based Fuels Norwegian Directorate for Higher Education and Skills Acknowledgement: The ongoing work is supported by PEERS (UTF 2020/10131) &BRIDGE (INTPART-322325) UiT The Arctic University of Norway

