High Entropy Alloys for Hydrogen Storage

Introduction:

• Hydrogen, a clean and versatile energy carrier, is pivotal for a sustainable energy future.

· Effective hydrogen storage is essential for promoting hydrogenbased energy sources.

• Many metal hydrides demonstrate an exothermic hydrogen absorption, offering compact and safer storage options with minimal risk of major hydrogen leaks.

• High entropy alloys (HEAs) offer promising solutions with unique properties for efficient hydrogen storage, while also enhancing safety and storage capabilities alongside metal hydrides.

• To develop fundamental insight into HEAs with respect to their

hydrogen storage performance.

Project Goals:

- · Investigate why there is underutilization of hydrogen storage capacity in certain materials.
- · Enhance hydrogen capacities and stabilities via alloy composition tuning.
- Explore hydrogen-to-metal ratios beyond standards in HEAs.
- Assess incorporating elements into HEAs while maintaining kinetics and reversibility.
- Examine the impact of non-hydride-forming elements in HEAs.

Fig.1 Schematic illustration of the four core effects affecting the properties of the HEAs [1]

Fig.2 Different methods and phenomena of the various hydrogen storage systems [2]

School.no

Norwegian Research School on Hydrogen and Hydrogen-Based Fuels

ം Berni and Ber

Sreeshyam Vadake Adat

Affiliation(s) = University of Oslo (UiO) & Institute for Energy Technology (IFE)

Related projects: FME HYDROGENi

Supervisors: Professor Anja Olafsen Sjåstad (UiO), Chief Scientist/Professor II Bjørn C. Hauback (IFE/UiO), Senior Scientist Stefano Deledda (IFE) and Professor Helmer Fjellvåg (UiO)

Education and Experiences:

PhD Research Fellow, Centre for Materials Science and Nanotechnology. Department of Chemistry, UiO (2024 onwards)

Research Assistant Intern. National Changhua Normal University, Taiwan (2023)

Master's Degree in Physics, Indian Institute of Technology Mandi, India (2020-22)

12		N.	
	4:	P	
	V	1	
	V.A	1	
		A starting	

Estimated	progress	of	the PhD	pro	oject:
Just started	< 50 %	2	> 50 %	•	Almost done @

References:

- Somo, T.R., Lototskyy, M.V., Yartys, V.A., Davids, M.W., & Nyamsi, S.N. (2023). Hydrogen storage behaviours of high entropy alloys: A Review. Journal of Energy Storage, 73(Part B), 108969. ISSN 2352-152X. DOI: 10.1016/j.est.2023.108969
- Yadav, T.P., Kumar, A., Verma, S.K., et al. (2022). High-Entropy Alloys for Solid Hydrogen 2. Storage: Potentials and Prospects. Transactions of the Indian National Academy of Engineering, 7, 147-156. DOI: 10.1007/s41403-021-00316-w.
 - Sahlberg, M., Karlsson, D., Zlotea, C., et al. (2016). Superior hydrogen storage in high entropy alloys. Scientific Reports, 6, 36770. DOI: 10.1038/srep36770.

