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1 Introduction

Teachers and schools are key determinants of educational success and later-life outcomes
(Rivkin et al., 2005, Chetty et al., 2014a,b, Dobbie and Fryer, 2013, Angrist et al., 2016).
However, not all students have equal access to high-quality teachers and schools. For example,
students from minority or disadvantaged backgrounds are on average matched with teachers
with lower levels of experience, preparation, or value-added (Clotfelter et al., 2005, 2007,
Lankford et al., 2002, Sass et al., 2012). Similarly, good teachers are often assigned to high-
achieving classrooms (Dieterle et al., 2015)." Differences in access to high-quality teachers
and high-quality schools, in turn, can exacerbate inequalities in education outcomes (Reardon
et al., 2016). Little is known, however, about the extent to which unequal access to teacher
and school inputs contributes to inequality in education outcomes. So far, the literature on
this topic remains inconclusive.?

In this paper, I provide new evidence on the question of whether unequal access to teacher
and school inputs explains inequality in education outcomes. I start from the observation that
students and teachers are assigned to (or self-select into) schools and classrooms; these assign-
ments or “sorting” processes lead to a pattern where high-ability students attend good schools
and learn from good teachers more frequently than low-ability students. In other words, the
resulting student-teacher-school-matches are “assortative” (i.e., non-random), which in turn
can drive inequality in education outcomes. My analysis disentangles the relative contribu-
tion of the three different components of assortative matching—the matching of teachers to
schools, the matching of students to schools, and the matching of teachers to students. In
this way, I explain variations in test score outcomes among elementary school students in
North Carolina.

The methodological challenge of the analysis lies in the identification and estimation of

!Teacher sorting accounts for some of these matching patterns. Teachers prefer schools with favorable
student backgrounds and sort on the ability of the students (Boyd et al., 2013). Moreover, teachers have
preferences over the demographic composition of the student body in a school (Jackson, 2009), and good
teachers tend to leave schools that do not meet accountability standards (Feng et al., 2018).

2Mansfield (2015) concludes that teacher-student sorting explains only a negligible share in the test score
variance across students in North Carolina’s public high schools. Reardon et al. (2016) highlight that racial
and ethnic segregation across schools is important in explaining achievement gaps across students in several
metropolitan areas and school districts in the US.



teacher and school quality since observable teacher and school characteristics are in gen-
eral poor predictors for student achievement.® To address this challenge, this paper uses
identification results from the worker-firm sorting literature (Abowd et al., 1999, henceforth
“AKM”) to disentangle and estimate the unobserved components of teacher and school qual-
ity in an education production model. In the worker-firm context, the switching of workers
across firms generates the identifying variation which allows the researcher to disentangle the
unobserved components of a firm’s effectiveness from the unobserved component of a worker’s
productivity. Similarly, in the teacher-school setting, the switching of teachers across schools
generates such identifying variation.* The education setting, however, is different because of
student sorting, which adds an additional layer to the sorting problem. Students select into
schools based on teacher and school characteristics, and teachers select into schools based on
the composition of the student body. I extend the AKM-type education production model
such that students can sort based on observed and unobserved characteristics of the teachers
and schools, and teachers can sort based on observed student characteristics, in particular,
past test scores and demographic characteristics.

The data set covers the universe of public elementary schools in North Carolina; it contains
about 1.6 million student-year observations and extends over a period of 15 years (1997-
2011).5 20 percent of the teachers switch schools at least once during the period under study
and thus generate the identifying variation. The outcomes are standardized end-of-year test
scores in math and reading. In order to measure students’ preparedness, I use standardized
pretest scores as well as a rich set of variables on students’ socio-economic backgrounds.

I find that the assortative matching between students, schools, and teachers explains in

total 17 percent of the across-classroom test score variation in math, and 19 percent of the

30bservable teacher characteristics such as experience and education explain only a small portion of a
teacher’s effectiveness (Rivkin et al., 2005, Rockoff, 2004). Similarly, observable school characteristics usually
explain only a small portion of school effectiveness (Dobbie and Fryer, 2013, Hanushek, 1997). Recent papers
thus measure school and teacher effectiveness based on unobservable characteristics using longitudinal data
(Rockoff, 2004, Chetty et al., 2014a, Rothstein, 2017).

4An alternative method would be to exploit student switching across schools to recover student unobserv-
ables. This approach is taken in a related work by Kramarz et al. (2015).

®Similar data sets have been constructed based on the NC data by Jackson (2013) to study match effects
between teachers and schools and by Rothstein (2017) to study biases in value-added estimates.



across-classroom variation in reading.® About one-third of this variation is due to teacher
sorting both within and across schools, and the other two-thirds are due to student-school
sorting. In a simulation exercise, I show that removing inequality in teacher access diminishes
the test score gap between the highest and lowest achieving classrooms. The test score gap
between classrooms at the top and bottom decile of the test score distribution would shrink
by 13 percent (0.16 test score standard deviations) in math and 8 percent (0.10 test score
standard deviations) in reading if teachers were randomly distributed across classrooms and
schools, holding classroom composition and all other factors constant. Finally, the model
uncovers systematic heterogeneity in sorting patterns across geographic locations. In large
cities, the sorting of students to schools explains a larger portion of the variation than the
sorting of teachers to students (19 percent versus 3 percent in math; 21 percent versus 4
percent in reading). In rural areas, the reverse is the case, i.e. the sorting of students to
schools explains a smaller portion of the variation than the sorting of teachers to students (3
versus 10 percent in math and 2 versus 7 percent in reading).

This paper relates to a number of studies that investigate unequal access to school and
teacher resources among students from different backgrounds. One strand of the literature
documents patterns of residential sorting and school segregation, which negatively affect
disadvantaged students (e.g. Deming et al., 2014a, Owens et al., 2016, Reardon et al., 2016).”
A second strand of the literature analyzes teacher sorting within and across schools and
shows that disadvantaged students often have access to low-quality teachers, both within
schools (Boyd et al., 2006, Dieterle et al., 2015, Kalogrides and Loeb, 2013), and across
schools (Clotfelter et al., 2005, 2007, Lankford et al., 2002, Jackson, 2009, Feng, 2010, Sass
et al., 2012, Feng et al., 2018). This literature, however, does not directly investigate the
implications of such sorting patterns for inequality in education outcomes. An exception is
an article by Mansfield (2015), who studies the link between student-teacher sorting in North

Carolina’s high schools and inequality in student test score outcomes. He finds that teacher

6The remaining variation is explained by student background characteristics (52% of the variation in math
and 50% of the variation in reading) and (non-systematic) variation in teacher quality (16% in math and 9%
in reading) and school quality (7% in math and 6% in reading).

"This literature also emphasizes the importance of accounting for unobservable school inputs when mea-
suring school quality (Deming et al., 2014b).



sorting explains only a negligible share of the variation in student test scores.

In the present paper, I contribute to the literature by analyzing three different sorting
channels (teacher-school, teacher-student, and student-school) and their relative importance
in a single model. This allows me to detect and compare different sources of inequality in the
education system, rather than focusing on a single channel. I show that all sorting channels
combined contribute substantially to the variation in test score outcomes in the context of
North Carolina’s primary schools; most of this variation is driven by student-school sorting,
but teacher-classroom sorting also plays a non-negligible role. These results complement prior
analyses that show only small contributions of teacher sorting at higher levels of schooling
(Mansfield, 2015). In addition, the present paper uncovers sizable heterogeneity in sorting
patterns across different geographic locations, thus emphasizing the need to take spatial
differences into account when explaining inequality in student achievement and later-life
outcomes.

The paper proceeds as follows. Section 2 presents a stylized overview of the sorting
problem as well as the institutional background for teacher assignments in North Carolina.
Section 3 outlines the empirical approach, and Section 4 presents the data sets and variables.
Section 5 describes and discusses the results. Section 6 discusses the findings in the light of

the literature, and Section 7 concludes.

2 Background

This section motivates and informs the empirical model. First, I review the institutional
background that governs teacher and student sorting in North Carolina’s public elementary
school system. Second, I discuss expected sorting patterns based on empirical findings from

North Carolina and other states.

Institutional background. The teacher assignment to schools and students in North
Carolina’s public elementary schools proceeds in two main steps. In the first step, teachers

form a job match with a school. Teachers either apply directly at the school, or they apply to



the school district, and the school district refers them to a school (Jackson, 2009). Teachers
can be both new teachers as well as incoming teachers from a different school. In the second
step, at the beginning of each school year, school principals assign teachers to classrooms.
This paper focuses on the main classroom teachers in math and reading, who teach only one
classroom in a given year.

Because of the regulation of teacher pay, limited variations of teacher wages across and
within schools exist, which restricts the scope for schools to attract teachers through monetary
incentives. A state-wide pay schedule allows teacher pay to vary only with experience and
education. School districts can pay a supplement to the state salary, but this supplement
can only vary by experience and education as well (Clotfelter et al., 2011).

The student sorting consists of two main steps as well. In the first step, students sort
to schools. In North Carolina, a student’s residential location largely determines his/her
assignment to a public school, with few exceptions (Bifulco and Ladd, 2007, Bifulco et al.,
2009, Jackson, 2009); but students can opt out of the public school system and choose
private schools, charter schools, or homeschooling instead. In the second step, principals

assign students to classrooms and thus match them with a teacher.

Expected sorting patterns. From the perspective of standard labor supply theory, one
might not expect assortative matching between teachers and students/schools in settings
where wage differentiation across teachers is very limited. Several studies, however, document
assortative matching among students, teachers, and schools in such settings. Better-prepared
students have access to better teachers, both within and across schools (Dieterle et al., 2015,
Clotfelter et al., 2006, Lankford et al., 2002, Sass et al., 2012), better teachers teach in better
schools (Feng et al., 2018), and schools with favorable student characteristics attract better
teachers (Sass et al., 2012, Boyd et al., 2013).

Teachers often sort based on the observed characteristics of the students in a school (Clot-
felter et al., 2011, Boyd et al., 2013). Teachers generally favor schools and classrooms
with higher ability levels; moreover, teachers have preferences over students’ demographic

characteristics—their racial and socio-economic background, for example, (Dieterle et al.,



2015, Jackson, 2009, Sass et al., 2012). The reasons for these preferences are diverse; for
example, high-ability students might be easier to teach, and schools with lower poverty levels
are often in more attractive neighborhoods. In addition, school principals use classroom as-
signments to attract, reward, or retain good teachers. Thus, within a school, better teachers
are likely to teach better-prepared students (Dieterle et al., 2015).%

Teacher sorting patterns and student sorting patterns are intertwined and likely to rein-
force each other. While a teacher may choose a school based on the demographic composition
of the student body (Boyd et al., 2013), families may choose their residential location based
on the composition of the teacher work force in the desired school or school district.

The sorting between students, schools, and teachers, however, is unlikely to turn out as
perfect positive assortative matching for a number of reasons. First, within schools, principals
may want to reduce the inequality in test score outcomes across students. In this case, they
may assign better teachers to disadvantaged students in order to narrow the achievement
gap. Second, teachers’ preferences over students’ characteristics are heterogeneous. While
some of the teachers prefer classrooms that are easy to teach, others prefer to teach class-
rooms with low-ability or disadvantaged students. Third, location constraints, search costs,
and job-switching costs add additional frictions, which have been well-studied in the labor
literature (Mortensen, 1986, Mortensen and Pissarides, 1999). For example, a good teacher
may prefer to teach in a high-quality school, but may not be willing to incur commuting or
relocation costs (Boyd et al., 2013).

Ultimately, the amount of assortativeness in the data is an open empirical question;
therefore, the next section turns to the empirical model, which quantifies the amount of

sorting and its relation to test score inequality across classrooms.

8 Alternative explanations for sorting are complementarities between characteristics of the teacher and the
classroom. This paper, however, does not model such complementarities in order to keep the model tractable.



3 Empirical approach

3.1 Model

I consider an educational production function, where the output variables are end-of-grade
test scores of students in grades three to five in math and reading. This output depends on

student inputs, teacher inputs, and school inputs:

! ! ! / !
Y = Xy + Hage) T VJ(i,t)t5 + Qs t WS(i,t)tp+ Dy + G€ + Gt
N—~— —_—— ~—~
student preparedness teacher quality school quality grade and year dummies error term

(1)

The outcome y;; is the test score of student ¢ at time t. Three types of inputs enter into
the production of test scores in an additively separable way. First, the outcome depends
on a student’s background Xj;;, which is a vector of characteristics including measures of
ability (baseline test scores before entering the third grade, classified as gifted or learning
disadvantaged, limited English proficiency), socio-economic background (free/reduced-price
lunch eligibility, parental education), and demographic characteristics (gender, race, age).
Second, the model includes teacher quality. Teacher quality has a time-invariant component
also known as “value-added”, (¢4, where J(i,t) = j is a function that uniquely maps
student 7 to its teacher j at time t; teacher quality, furthermore, has a time-varying component
measured through teacher experience, VJ(i,t)t.g Third, independent of teacher quality, the
school provides several inputs such as the school administration and facilities. The time-
invariant component of school quality is denoted as ag(;), where S(i,t) = s is the function
that maps the student 7 to its school s at time . Moreover, the school quality may vary
with the composition of the student body in terms of background characteristics, W ).
(average baseline test scores at the school level, the fraction of students with free/reduced-
price lunch, and the racial composition). Finally, test scores can vary across years, captured
by year dummies, D;, as well as across grades, captured by grade dummies, G;. €5 is an

idiosyncratic error term.

9In order to separately identify time effects from experience effects, I pool experience levels into categories
(c.f. Mansfield, 2015): less than one year, 1-2 years, 3-5 years, 6-11 years, 12 and more years.



The error term consists of three different components:

€it = Qs T Vit T €it, (2)

where ¢g(; ) captures shocks to the impact of school quality (e.g., through a change of the
school principal), v captures shocks to teacher value-added (e.g., through changes in
the teacher’s health), and e; captures all other shocks to student outcomes (e.g., shocks to
parental inputs).

This paper quantifies the contribution of teacher quality, school quality, and assortative
matching between teachers, schools, and students to the dispersion in test scores across stu-
dents; to this end, I decompose the test score variance of test scores into several components.
The variance of the sum on the right-hand side of Equation 1 can be rewritten as the sum of
the variances plus all possible covariances. Following Abowd et al. (1999), I exploit this re-
sult in order to decompose the variance into its main components (variances) and the sorting
components (covariances).

The following simplified example of an education production function illustrates the vari-
ance decomposition and its interpretation. Consider a random variable Y, here, student test
scores. Assume further that the test scores are solely determined by two other random vari-
ables, student preparedness X; and teacher quality X5, and that both inputs are additively

separable such that Y = X; 4+ X,. Then, we can decompose the test score variance as

Var(Y) = Var(X; + X3) = Var(X;) + Var(Xy) + 2Cov(X;, X3). (3)

The first two terms capture the variances in student and teacher quality. The last term,
2Cov(X1, X3), captures both the amount of sorting and its influence on the outcome. For
example, if Cov(Xy, X3) = 0, then the teacher and student inputs are uncorrelated, and
sorting does not contribute to differences in test scores across students. One way to achieve
a zero covariance is, for example, to assign students randomly to teachers. Notice, however,

that random assignment is not a necessary condition for a zero covariance. For example, if



teachers and students sort along dimensions that are unrelated to their preparedness/quality,
the sorting does not contribute to inequality in test score outcomes. If Cov(Xy, X3) > 0,
then positive assortative matching exists, and sorting exacerbates the test score differences
across students. This, for example, is the case if better teachers are systematically assigned to
better-prepared students. If Cov(X;, X5) < 0, then negative assortative matching exists, and
sorting reduces the test score gap between highly-prepared students and students with low
levels of preparation. This, for example, is the case if students with low levels of preparation
are systematically assigned to high-quality teachers.

Model 1 is more complex and contains a larger number of variables, yet the same principle
applies—the variances capture the contribution of the inputs, and the covariances measure
the contribution of sorting. The model distinguishes between the three main input categories,
student preparedness, teacher quality (a combination of teacher value-added and teacher ex-
perience), and school quality (school effects and school composition); thus, the decomposition
results in three variance and three covariance terms, i.e. six parameters of interest (see the
definition of parameters in Table A.1).

A focus of this paper is on the sorting of better teachers to better schools and students;

the following term captures the sorting of high-quality teachers to highly-prepared students:

Cov((pgip + V}(i,t)té)v Xi). (4)

Moreover, the decomposition is informative about the sorting of students to schools. For
example, the following term captures the sorting of highly-prepared students to high-quality

schools:

COV((aS(i,t) + Wé(i,t)tp)a Xi)- (5)

After decomposing the variance into its parts, one can compare the different sorting
processes and express the variance contributions as a fraction of the total variance. For

example, the portion of the variance in test scores that can be explained by the sorting of

10



highly-prepared students to high-quality teachers is:

Cov (e + Vimd), Xiy)
Var(yijst)

- (6)

The analysis, thus, informs researchers and policy makers about the relative importance
of different sorting channels in a given setting. For example, are school and teacher resources
relatively balanced across students? Additionally, the model allows for a comparison of these
patterns across time and space; this paper considers heterogeneity in the sorting patterns

across different geographical areas (e.g., urban and rural areas).

3.2 Identification

Model 1 is a version of the worker-firm sorting model by Abowd et al. (1999) (also ab-
breviated as “AKM” model). In their model, the authors study the sorting of workers to
firms/establishments along unobservable dimensions. This is similar to the setting in this
paper, where the schools are the “firms”, and the teachers are the “workers”. The AKM
model and Model 1 differ mainly because Model 1 measures the outcome at the student and
not at the teacher (worker) level. The sorting of students to schools and teachers adds an
additional layer to the model.

In order to discuss the assumptions for the model to be identified, I follow Abowd et al.
(1999) and Card et al. (2013) and rewrite the model in matrix notation. N* denotes the
number of student-year observations.!? I furthermore introduce .J teacher indicators, and S
school indicators. These indicators are set to 1 if the student is assigned to the respective
teacher/school, and 0 otherwise. Each student can only be assigned to one school and teacher

in a given year. Thus, Model 1 can be rewritten as:

y = X~y + Hpu+Vs + Fa+Wp+  DY+GE e, (7)
———

student preparedness  teacher quality = school quality  year and grade dummies

where y is an N* x 1 vector of test scores, H = [h',...,h7] is an N* x J matrix of teacher

0FEach student is present in the data set for at most three years, with the exception of students who repeat
a year.

11



indicators, and F = [f!, ..., f°] is an N* x S matrix of school indicators. The model also

contains a matrix of student-level controls X = [z, ..., 2%], a matrix of indicators for teachers’
experience levels V = [v!, ..., vL],'* a matrix of school composition variables W = [w!, ..., w],
a matrix of time dummies, D = [d!, ..., d"], and a matrix of grade dummies G = [¢!, ..., ¢*].

The matrices for the dummy variables are always defined up to one reference category.

The first set of assumptions ensures that teacher and school effects can be separately
identified. First, schools must be observed multiple times during the sample period, and at
least some of the teachers must be observed in different schools. This implies that some of
the teachers must switch schools. To illustrate the importance of this assumption, suppose
that each school hires a fixed set of teachers in the first time period and remains with these
teachers throughout the whole sample period. The school effect would then be completely
absorbed by the teacher effects.

Second, the identification requires that a set of schools is completely connected through
teacher switches during the sample period. Two schools form a link if at least one teacher
switches between the two schools. All schools in the sample must be linked directly or
indirectly to one another because the school effects can only be interpreted relative to a
reference school. In a connected set of schools, the school effects are identified up to one
reference school. The number of reference schools equals the number of connected sets. If
several connected sets are pooled in the analysis, one cannot directly compare the school
effects without further assumptions.

A second set of assumptions considers the strict exogeneity of the observed characteristics,
the teacher assignments, and the school assignments. Conditional on all variables in the
model, each of the variables and assignments must be uncorrelated with contemporaneous,
past, or future shocks to the outcomes. Given the seven matrices on the right hand side of

Equation 7, we express this assumption in terms of eight orthogonality conditions:

HExperience levels are broken up into bins (less than one year, 1-2 years, 3-5 years, 6-11 years, 12 years
and more) so that they can be identified separately from year fixed effects.

12



Ex¥e =0 Vk, E[We{=0 Vj, E@'dg=0 VI, (8)

E[f*e=0 Vs, E[w™e =0 VYm, E[d'e=0 VYt E[lg"e=0 VYp.

Three of the orthogonality conditions concern the set of student background characteris-

tics as well as time and grade dummies:

Elz¥ =0 Vk, E[d'g=0 ¥t E[¢" =0 VYp. (9)

I assume that student background characteristics and year and grade indicators are pre-
determined. In other words, a student’s background (e.g., his baseline test score or demo-
graphic characteristics) must not be affected by contemporaneous or future shocks to the
outcome, conditional on all other characteristics in the model. This assumption is standard
in the literature since it is difficult to manipulate or adjust background characteristics; more-
over, the baseline test scores and demographic characteristics are measured before the child
enters school.

Two further orthogonality conditions consider the teacher assignment:

E[W'd=0 Vj (10)

E[W'e =0 VI (11)

As Card et al. (2013) show in the worker-firm context, a sufficient condition for Equa-
tion 10 to hold is that teacher assignments are independent of contemporaneous, past, and
future shocks to student achievement, teacher quality, and school quality, conditional on all

other variables in the model. In the formulation of Model 1, this implies that

13



PlJ(i,t) = j|€>aS(i,t)aMJ(i,t)>XitaVJ(i,t)t)aWS(i,t)taDtaGt] (12)

= PU@J) = j‘QS(i,t)aMJ(i,t)aXitaVJ(i,t)t)aWS(i,t)taDtaGt] Vi, j,t,s.

The probability of being assigned to a certain teacher must thus be independent of con-
temporaneous, past, or future shocks to teacher quality, school quality, or any other idiosyn-
cratic shocks to the outcome. This assumption is not violated if better-prepared students
are matched with better teachers. As long as student background characteristics sufficiently
reflect student preparedness (e.g., through prior test scores and other socio-demographic
characteristics), sorting does not bias the model estimates.

There are at least four concerns about the strict exogeneity of teacher assignments (Equa-
tion 12):

First, this assumption is violated if teachers sort into schools based on anticipated shocks
to school inputs. For example, suppose that a teacher switches to a school that he anticipates
will become better after the switch (for reasons other than the quality of the other teachers
at the school). In this case, the model would attribute the quality increase to the teacher
fixed effect, rather than to the school fixed effect, so that the teacher fixed effect will be
upward biased. In order to mitigate this concern, the model includes time-varying school
characteristics that reflect changes in school quality (i.e., average test scores at the school
level, racial and socio-economic composition of the student body).

Second, the assumption is violated if teacher effort displays an Ashenfelter dip (or spike),
i.e. if teachers slack off once they know that they will change their workplace, or they spend
disproportionately high effort once they start working in a new school. In this case, the model
would wrongly attribute the adjustments in effort to the quality of the school. This would
bias some of the school fixed effects upwards, and some of them downwards. If this bias
is systematically related to school quality (e.g., teachers tend to increase their effort more
when changing to a higher-quality school), one would overstate the importance of school fixed

effects. Since both effort and school quality are unobserved in the present setting, however,

14



it is not possible to directly test this assumption.

Third, the assumption can be violated through dynamic tracking or sorting of students on
unobservable student characteristics, even conditional on lagged student test scores (Roth-
stein, 2010). For example, teachers who are going to leave a school may be systematically
assigned to students that are worse in unobserved dimensions, and teachers who are new to a
school may be systematically assigned to students that are better in unobserved dimensions.
In this case, one would attribute the effect of student ability to the permanent teacher effect,
which could inflate the variance in teacher value-added (Rothstein, 2017). Other sources of
dynamic sorting are time-varying student characteristics that are not included in the model.
Controlling for a large set of student background characteristics is, therefore, essential in the
present setting.

Fourth, the assumption may be violated if match effects or complementarities between
teachers and schools occur. Specifically, teachers who switch may be more productive in
their new school, compared to their old school, as they learn about their school-specific
productivity over time (Jackson, 2013). In this case, one can no longer identify the school
fixed effects separately from the teacher effects. If teachers improve their match quality over
time, the variables that capture teacher experience absorb part of the match effects. To test
for remaining teacher-school match effects, I follow Card et al. (2013) and compare the model
fit of the AKM-type model with the fit of a model that uses fully interacted teacher-by-school
fixed effects. Since the model fit of the fully interacted model is only slightly better than the
model fit of the AKM-type model, I conclude that the match effects are unlikely to affect the
aggregate results on the contribution of sorting (see Section A.3.1 for details).

I also assume that the experience level of the assigned teacher is pre-determined, so that
Equation 11 holds. Finally, the last two orthogonality conditions consider the assignment of

students to schools:

15



E[f =0 Vs, (13)

Ew™e =0 Vm. (14)

In order for Equation 13 to hold, school assignment has to fulfill the following strict
exogeneity condition, expressed as the probability of student ¢ to be assigned to a certain

school in a given year:

P[S(iat) = 3’€7a5(i,t)>ﬂj(i,t),Xit,VJ(z’,t)t,WS(z‘,t)t,Dt,Gt} (15)

= P[S(iat) = SyaS(i,t)nuJ(i,t)int;VJ(i,t)t)>WS(i,t)t>DtaGt] Vi,7,8,t.

The probability distribution over school choices for a student in a given year must be
independent of past, present, or future shocks to teacher value-added, school value-added, or
other idiosyncratic shocks to student outcomes, conditional on all other variables included
in the model. The assumption of exogeneity of school choice is, for example, violated if
students sort into schools based on anticipated shocks to school inputs (such as the change of
a principal or changes in the school infrastructure); it is also violated if schools adjust their
resources in response to the composition of the student body. Consequently, test score growth
would be wrongly attributed to the school fixed effect rather than to student preparedness
(see also the discussion by Mansfield, 2015). Model 1 includes a set of control variables
at the student (classroom) as well as school level. The specification accounts for the most
important observable dimensions of student sorting, in particular, sorting on ability (baseline
test scores) and socio-economic status. The assumption is thus satisfied as long as the sorting
does not occur on unobservable dimensions.'? Once the strict exogeneity of school assignment

is established, I assume that the student composition in terms of observable characteristics

12A detailed discussion on potential violations of such an exogenous mobility assumption is also provided
by Kramarz et al. (2015).
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is also pre-determined, so that Equation 14 holds.

3.3 Estimation

To estimate the model, I transform Equation 1 into a classroom-level equation. This transfor-
mation, which reduces the computational burden, is appropriate for two reasons. First, the
variation of interest—i.e., the variation in school and teacher quality—occurs at the class-
room level since each student has exactly one classroom teacher in a given year. Second,
student characteristics enter into the model in a linear and additively separable way, such
that they can be aggregated to the classroom level without loss of information.'® Estimating
the model at the classroom level instead of the student level reduces the dimension of the
matrix that needs to be inverted in the estimation by a factor of about 20 (the average class

size is 21). Thus, I estimate the following classroom-level model:

Yejst = Qs + j + ylcﬁ + V;‘/t(s +Wip+ Db + Gi& + €cjst) (16)

where ¢ denotes the classroom. The outcomes under study 7., are the average math and
reading test scores of students in classroom ¢, which is taught by teacher j in school s at
time t. The specification includes student control variables at the classroom level (average
baseline test scores in math and reading and their squares, the fraction of students with
missing baseline test scores, fraction female, fraction of students eligible for free or reduced-
price lunch, fraction with missing information on free or reduced-price lunch, fraction of white
students, fraction with parents whose highest degree is a high school degree or less, fraction
with missing information on parental education, average age, fraction of students with limited
English proficiency, fraction of gifted students, fraction of learning-disadvantaged students),

time-varying teacher characteristics (experience in bins of less than one year, 1-2 years, 3-5

13The difference between the estimation at the classroom level and at the individual level is the weighting
scheme. If class sizes were unbalanced in the data, then the aggregation at the classroom level could deliver
misleading conclusions on the actual impact of teacher assignment. North Carolina, however, has strict
guidelines on class sizes (the maximum class size is 30). Moreover, I exclude classrooms with more than 30
and less than 10 students, and I run representative specifications at the student level, the results of which
differ only slightly from the classroom level estimations (results not shown).
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years, 6-11 years, 12 or more years), time-varying school characteristics (average baseline test
scores, fraction of students eligible for free or reduced-price lunch, fraction of white students),
as well as class size, year dummies, and grade dummies.

I estimate the model using OLS, restricting the estimation sample to the largest connected
set of schools, which contains 96 percent of the schools and 99 percent of the teachers in the
initial sample (see Table A.2).! T then decompose the variance based on the estimated fixed
effects and coefficients (Card et al., 2013).

As Abowd et al. (1999) and Andrews et al. (2008) point out, a two-way fixed effects esti-
mation that relies on worker (here: teacher) moves should take a potential “limited mobility
bias” into account. If teachers rarely move, or if schools have few movers, the estimates of
both teacher and school effects can be biased. Imagine, for example, a teacher who moves
once and who moves across schools of identical quality. By chance, he draws a bad classroom
in one school and a good classroom in the other. If the quality estimates for these two schools
were based on this mover alone, the school effects for these two schools would be biased. As
the number of movers per school grows, or alternatively, as the number of years that a teacher
spends in each of his/her schools grows, the school effects should approach their true value.

Biases in school effects can also translate into biases in teacher effects. The teacher effect
for the stayers is the test score increase net of school effects and control variables; therefore,
the teacher effects for the stayers depend negatively on the school effect by construction.
Consequently, a positive bias in a school effect leads to a negative bias in a teacher effect,
and the other way around, which can generate an artificial negative correlation between
teacher and school effects.

To address both problems, I follow the procedure suggested by Andrews et al. (2008). T
compute the school fixed effects only for schools that have at least 10 teachers who move
during the sample period. I denote the teachers who move at least once in the sample period
as “movers” and the schools that have at least ten movers as “high turnover schools”. In order
to preserve the connected set, the schools with less than 10 teacher movers are collapsed into

a large reference school for the purpose of the estimation (see Andrews et al., 2008). I

14n order to compute the connected set, I use the command felsdvreg in STATA.
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present the decomposition results for two samples—for the sample of all teachers and for
the sample of movers (see the sample description in Table A.2). A Monte Carlo experiment,
which I describe in detail in the appendix (Section A.3.2), confirms that the restriction to
high turnover schools and movers reduces potential biases in teacher value-added and school

effects.

3.4 Variance decomposition

I decompose the variance in test scores across classrooms into its variance and covariance
components based on Model 16. I consider three main categories: student preparedness
(modeled as a background index based on lagged test scores and socio-demographic charac-
teristics, Y’Ctjy), teacher quality (measured as teacher value-added, p;, and teacher experience
effects V,0), and school quality (measured as the school fixed effects, ,, and the school com-
position effects, W/, p). Considering all three categories results in three variances and three
covariances. While the variances capture the main effects in the model, the covariances cap-
ture the sorting of teachers to students, teachers to schools, and students to schools. 1 also
report the contribution of the remaining variance and covariance terms, i.e. the contribution

of grade and time fixed effects as well as the error term, such that all variance contributions

add up to 100 percent.

4 Data

Data sets and variables. I use administrative records for the universe of school children
in North Carolina’s elementary schools (grades 3-5) for the years 1997-2011. The data is
provided under a restricted use agreement by the North Carolina Education Research Data
Center at Duke University. Based on randomized identifiers, one can link information on
students, teachers, and schools, and track them over time. In constructing the data set, I
closely follow Jackson (2013) and Rothstein (2017).

As the outcome, I use students’ end-of-grade test scores in math and reading based
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on state-wide standardized tests, and I standardize the test scores at the year-by-grade
level. In addition to test scores, the data contain student background characteristics (age,
ethnicity, parental education, eligibility for free or reduced-price lunch) and information
on student preparedness (classified as gifted students, academically disadvantaged, or with
limited English proficiency). I extract prior-year test scores from end-of-grade test files or,

> The masterbuild files also contain pretest

where missing, from the “masterbuild” files.!
scores for grade-3-students; these test scores were collected before the students entered the
elementary school level.!6

The end-of-grade files contain an identifier for the test proctor, which in most cases iden-
tifies the classroom teacher. In order to exclude those proctors who were not the classroom
teachers, I follow the procedure as suggested by, for example, Rothstein (2017). This proce-
dure uses the personnel file, which contains information on a teacher’s grade level as well as
whether the teacher taught a self-contained classroom in a given year. I exclude those exams
supervised by a teacher who was not listed as teaching a self-contained classroom in grades
3-5 in the given year. Based on this restriction, about 75 percent of teachers supervised their
own classrooms. I exclude the 25 percent of classrooms who had proctors that were different
from their classroom teacher.

Using the teacher identifiers, I add teachers’ observable characteristics based on salary
files. These files contain information on teacher qualifications (degree, the school and state

where the degree was obtained, whether the teacher has a license, whether the teacher is

certified) as well as a teacher’s experience.

Panel balance. The data contain about 2.6 million student-year observations, 127,000
teacher-year observations (34,000 teachers), and 1,440 schools over a period of 15 years. The

sample is not completely balanced with respect to teachers and schools (see Figure A.1).

5 These files contain information that the school reports to the North Carolina Department of Public
Instruction.

16Grade 3 pretests are missing in 2006 for math, in 2008 for reading, and in 2009-2011 for both math and
reading. I, therefore, exclude grade 3 students from the analysis in 2006 and 2008-2011. In addition, some
of the background variables may be reported in the end-of-grade file in some years, and in the masterbuild
file in other years. For detailed information, please contact the author.
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In particular, teachers enter and exit the data set during the time period. Each teacher
is observed in the sample for 3.7 years on average. About 30 percent of teachers are only
observed in one year. The data do not contain any information on the reasons why teachers
drop out or are missing in certain years.!” By contrast, the panel of schools is rather balanced.
On average, each school remains in the sample for about 11 years. About 40 percent of schools
participate in the sample for the entire period.

The identification of both teacher and school fixed effects relies on the movement of
teachers across schools, which is illustrated in Figure A.2. Intuitively, the more frequently
a teacher moves, the more accurately can his fixed effects be recovered, independently of
the school where he teaches. About 20 percent of teachers switch schools during the sample
period, and about 80 percent of the movers switch schools only once. Conditional on moving,

teachers move on average 1.19 times.

Samples. Throughout this paper, I use both student-level data sets and teacher-level data
sets. Table A.2 presents an overview of the different samples. I use a student-year level data
set to present summary statistics and a raw decomposition of the test score variance into
within-classroom, across-classroom-within-school, and across-school components. To perform
the estimation of Model 16, I collapse the student-year level data set to the teacher-year (i.e.,
classroom) level. In the teacher-year level data set, all student characteristics are classroom
averages. For the variance decomposition, I further restrict the sample to the high turnover
schools and; T also create a sample that contains only movers (i.e., teacher who move at
least once during the sample period). Since I consider heterogeneity in sorting patterns
across regions, I restrict the decomposition sample to those schools that have non-missing

information on the type of region where they are located.

Summary statistics. Table A.3 summarizes the sample and the variables used in the
analysis. The majority of the students come from backgrounds with low levels of parental

education and low socioeconomic status. 11 percent of the students’ parents are high school

17The reasons may rank from both professional reasons (e.g., changes to private schools, obtaining a degree),
but teachers may also move to a different state or take a leave of absence.
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dropouts, and 46 percent of parents obtained a high school degree but no further educa-
tion. With 47 percent of students who are eligible for free or reduced-price lunch, the socio-

economic status of the students is below the federal average during the sample period.!®

5 Results

5.1 Descriptive evidence of variance contributions

Table 1 presents descriptive evidence on the relative contributions of within-classroom vari-
ation, between-classroom-within-school variation, and across-school variation to the overall
variation of test scores. The largest share of the variation in test scores is explained by
within-classroom variation (77 percent of the total variation in math test scores, and 81
percent of the total variation in reading test scores). Only 12 percent of the variation in
math test scores and 10 percent of the variation in reading test scores can be attributed to
variation across classrooms; a similar share can be ascribed to variation across schools—11
percent of the variation in math test scores and 10 percent of the variation in reading test
scores.

Table 1: Descriptive evidence: Components of test score variances

(1) (2)
Math Reading

Total test score variance 0.98 0.98

Contribution to total test score variance (in %)

Between-school variance 11% 10%
Between-classroom-within-school variance 12% 10%
Within-classroom variance 7% 81%

Note: Decomposition of raw variances in math test scores and reading test scores. The sample
contains 2,584,712 student-year observations in 122,146 classrooms and 1,361 schools. Each school
has on average 90 classroom-year-observations, and the average class size is 21. Test scores are
standardized at the year-by-grade level with a mean of 0 and a standard deviation of 1. Only
schools with at least 10 teacher moves in the sample period and with non-missing information on
the type of region where the school is located are included in the sample. In the sample, the average
math test score is 0.03, and the average reading test score is 0.02.

18See https://nces.ed.gov/programs/digest/d12/tables/dt12_046.asp.
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This paper focuses on explaining the test score variation across classrooms and schools,
which accounts for 23 percent of the overall variation in math test scores and for 20 percent of
the overall variation in reading test scores. Since value-added models such as Model 1 assume
that teacher inputs enter linearly into the education production function, teacher sorting
cannot affect the within-classroom variation of test scores if all students in a classroom have
the same teacher.

This paper also considers heterogeneity in teacher and student sorting patterns across re-
gions, both within and across schools. Table A.4 depicts regional differences in raw variances
as a first descriptive step. I distinguish between five types of regions, using the classification
by the NCERDC: large and mid-size cities, urban fringe, towns, and rural areas. The con-
tribution of the between-school variance in math test scores to the total test score variance
is highest in large cities (14 percent in both math and reading), and lowest in rural areas
(8 percent in math an 7 percent in reading). By contrast, there are only small differences
across geographic areas in the contribution of the across-classroom variance within the same
school to the overall test score variance. The following analysis explores the role of teachers’
and students’ sorting patterns in explaining the differences in variance contributions across

regions.

5.2 Estimation of the education production

Before conducting the variance decomposition, I verify that the education production function
delivers sensible estimates of the teacher effects, the school effects, and the coefficients on
the observable characteristics (Tables A.6 and A.5).

The magnitude of teacher value-added from the estimation is strikingly in line with the
results that use alternative ways to compute value-added. For teacher value-added in math,
I find a standard deviation of 0.191 (Table A.5), i.e. an increase in teacher quality by
one standard deviation corresponds to an increase in average student test scores by 0.191
standard deviations. The result is almost identical to the result by Rothstein (2017), who

finds a standard deviation of teacher value-added in math of 0.192 in the same sample, using a
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different model and estimation approach.'® Teacher value-added is with a standard deviation
of 0.138 substantially lower in reading (Table A.5), which is also in line with the literature.?”

Teacher experience, by contrast, contributes little to student test score outcomes. Raising
the part of teacher quality that is due to experience by one standard deviation corresponds
to an increase in average test scores by 0.018 standard deviations in math and 0.010 standard
deviations in reading (Table A.5). Teacher experience matters most at the margin of less than
versus more than one year of experience (see Table A.6); only five percent of the teachers in
the sample, however, are novice teachers, such that experience does not account for much of
the overall teacher quality variation.

Similarly, the unobserved component of school quality (“school effects”) proves more im-
portant than the observed component of school quality (average student test scores at the
school level, student demographics, and socio-economic composition at the school level). In-
creasing the unobserved components of school quality by one standard deviation is associated
with an increase in test scores by 0.123 standard deviations in math and 0.103 standard de-
viations in reading. Changes in the composition of the student body, which are net of the
classroom composition, translate into smaller changes in test score outcomes. An improve-
ment in the observed component of school quality by one standard deviation maps into an
increase in test scores by 0.017 standard deviations in math and 0.029 standard deviations

in reading (Table A.5).

YRothstein (2017) uses the same method as Chetty et al. (2014a) and accounts for drift in teacher value-
added, i.e. teacher value-added may change over time. Moreover, Rothstein (2017) and Chetty et al. (2014a)
estimate the model at the student level and then average across students; by contrast, I first average across
classrooms and then run the model to compute value-added. Chetty et al. (2014a) find a standard deviation
of teacher value-added of 0.163 in math and 0.124 in reading in a different school district (see p. 15 of their
paper). Rothstein (2017) adds a note of caution to these estimates and the estimates from his replication in
the North Carolina data, arguing that the models are not robust to selection on student unobservables.

20Rothstein (2017) finds an even lower value of teacher value-added of 0.118 in reading.
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5.3 Results of the variance decomposition
5.3.1 Main results

Table 2 presents the results of the variance decomposition for the sample of high turnover
schools and movers, which is the sample that performs best in the Monte Carlo experiment
(see Section A.3.2). The results for the complete sample of teachers are similar and are
shown in the appendix (Table A.7). Table 2 distinguishes between three groups of variance
contributions: the main effects (Panel I), the sorting effects (Panel II), and the remaining
variances (Panel III), i.e. variances and covariances of grade and year controls as well as the
variance of the error term. All three groups add up to 100 percent of the total variance.
I further subdivide the contribution of sorting into the contribution of teacher sorting to
schools and students (Panel I1.A) and student sorting to schools (Panel I1.B).

The largest contribution to the variation in test scores comes from student preparedness
(here: the average level of student preparedness in the classroom). Overall, student pre-
paredness explains 52 percent of the variation in math test scores across classrooms and 58
percent of the variation in reading test scores (Table 2, Panel I). This result emphasizes the
persistence of test score outcomes since baseline test scores are the main measure of student
preparedness.

Teacher quality is the second most important input in the education production function.
It explains, in total, about 16 percent of the variation in math test scores and 9 percent of
the variation in reading test scores. School quality explains a smaller amount of the variance
compared to teacher quality with only 7 percent of the variance in math and 6 percent of the
variance in reading. The school quality measure is computed net of classroom composition
and teacher quality; therefore, only school-specific factors such as school facilities and school
management enter into the school quality effect.

Student sorting to schools is the third most important factor in explaining the variation
in student test scores (Table 2, Panel I1.B). It contributes 11 percent to the variance in
math test scores across classrooms and 14 percent to the variance in reading test scores

across classrooms. Thus, the importance of student sorting ranks just after the importance
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Table 2: Variance decomposition (Math and Reading): Main results

(1) (2) 3) @)

Math Reading
Test score average 0.017 0.000
Test score variance across classrooms 0.238 100% 0.205  100%

(I) Contribution of variances (main effects) 0.176  74.3% 0.150 73.2%

Var(student preparedness) 0.124  52.0% 0.119 58.1%
Var(teacher quality) 0.037  15.6% 0.019  9.4%
Var(school quality) 0.016  6.6% 0.012  5.8%
(1I) Contribution of covariances (sorting) 0.041 17.1% 0.038 18.6%

(II.A) Teacher sorting to schools and students ~ 0.014  5.9% 0.010  4.9%
2Cov(teacher quality, student preparedness)  0.018  7.5% 0.013  6.3%
2Cov(teacher quality, school quality) -0.004 -1.6% -0.003  -1.3%

(I.B) Student sorting to schools
2Cov (student preparedness, school quality) 0.027 11.2% 0.028 13.6%

(III) Remaining variance and covariance terms  0.021  8.7% 0.017  8.3%

Number of school effects 657
Number of teacher effects 5,630

Note: The table shows results of the variance decomposition based on Model 16. The dependent
variables are end-of-grade test scores in grades 3-5 in math and reading. All specifications control
for year and grade dummies. School fixed effects are obtained only for high turnover schools (i.e.,
schools with at least 10 movers). The remaining schools are pooled into the reference category. The
results presented here are for the high turnover schools and the sample of movers (i.e., teachers who
move at least once during the sample period).
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of teacher quality in math, and even before the importance of teacher quality in reading. In
other words, better-prepared students systematically reap the benefits of better schools.

Teacher sorting (Table 2, Panel II.A) explains, in total, 6 percent of the variation in
math test scores across classrooms and 5 percent of the variation in reading test scores across
classrooms. Teachers primarily sort on student preparedness, measured as the average level
of student preparedness in a classroom. By contrast, teachers do not positively sort on school
quality once the average level of student preparedness in a classroom is accounted for. The
covariance between teacher and school quality is close to zero.

Teacher sorting to classrooms with higher levels of average student preparedness can come
from sorting within or across schools. Table 3 decomposes the covariance between teacher
quality and student preparedness into a within-school and an across-school component. In
order to disentangle the two effects, I compute the average teacher quality for each school,
as well as each teacher’s deviation from the average teacher quality in the teacher’s school.
I then compute two covariances, (1) the covariance between the average teacher quality in
the school and classroom quality—a measure of student and teacher sorting across schools—
and (2) the covariance between a teacher’s deviation from the school average and classroom
quality—a measure of teacher sorting within schools. Sorting across schools is, overall, more
important than sorting within schools (4.7 percent versus 2.7 percent in math and 3.7 percent

versus 2.6 percent in reading).

5.3.2 Heterogeneity of sorting patterns across regions

Sorting of teachers to schools and classrooms as well as student sorting to schools may not be
equally important across geographic areas. Residential segregation and, therefore, segregation
in students’ backgrounds might be more severe in large cities compared to rural regions. For
similar reasons, teacher sorting patterns might differ between rural and urban areas as well.
Finally, teacher and student assignments to classrooms can also differ between geographic
locations since principals might have different constraints and preferences in different areas.

Before discussing the variance contributions in detail, this section acknowledges the dif-
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Table 3: Teacher sorting on student quality across and within schools

SO &) C)NNC)

Math Reading
Test score average 0.017 0.000
Test score variance across classrooms 0.238 100% 0.205 100%

2Cov(teacher quality, student preparedness) 0.018 7.5% 0.013 6.3%

across-school 0.011 4.7% 0.008 3.7%
across-classroom-within-school 0.007 2.7% 0.005 2.6%
Number of school effects 657
Number of teacher effects 5,630

Note: Decomposition of the covariance of teacher quality (/i; + Vj't(§ ) and student quality (estimated

as the classroom’s predicted performance, Y;fy) into a between- and within-school component
for math test scores (Panel I) and reading test scores (Panel II). The between-school covariance

is computed as 2 x Cov((f1; + Vj'tg),ylcﬁ), and the within-school covariance is computed as 2 *

Cov((f1; + V}40) — (15 + V1,0), X o).

ferences in the outcome levels across regions, as displayed in Table 4 for math and Table A.8
for reading. Overall performance is lowest in large cities (0.09 standard deviations below the
sample average in math and 0.12 standard deviations below the sample average in reading)
and highest at the urban fringe (0.11 standard deviations above the sample average in math
and 0.10 standard deviations above the sample average in reading). Thus, the performance
difference between cities and the urban fringe amounts to almost 20 percent of a test score
standard deviation, on average. Students in mid-size cites and towns perform below the
sample average but not as low as the students in large cities, and students in rural areas

perform slightly above the sample average but not as well as students in the suburban areas.
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Tables 4 and A.8 further provide insights into differences in sorting patterns across regions.
Student sorting accounts for a large portion of the across-classroom variance in test scores,
but this result is mostly driven by large cities and the urban fringe (see Panel I1.B). In large
cities, student sorting to schools explains 19 percent of the test score differences in math
and 21 percent of the test score differences in reading across classrooms; in rural areas, by
contrast, student sorting to schools explains only 3 percent of the test score differences in
math and 2 percent of the test score differences in reading.

The opposite pattern holds for teacher sorting to students both within and across schools
(Table A.9). Both teacher sorting across schools and teacher sorting within schools are less
important in large cities compared to rural areas. As one explanation for this pattern, schools
in rural areas might compensate for a smaller degree of school choice by allowing for more
imbalances in classroom and teacher assignments within schools.

In sum, large cities not only have the lowest average test scores but also the highest
variance in test scores. The joint contribution of both teacher and student sorting is very
similar across large and mid-size cities, suburban areas, and towns. Rural areas seem to be
the most balanced in terms of the distribution of teacher and school inputs across students,
suggesting that the low density of schools in rural areas limits students’ ability to sort. Since
the evidence in this analysis does not allow conclusions on the causal mechanisms behind

teacher and student sorting, further research is necessary to address questions of causality.

5.4 Simulation of counter-factual assignments

An alternative way to quantify the impact of teacher sorting is to contrast the distribution
under the current sorting as observed in the data with the outcome distributions under al-
ternative, i.e. counter-factual, teacher assignments across classrooms. This section considers
three different types of counter-factual teacher distributions:?! an equitable distribution of
teachers within schools, an equitable distribution of teachers within schools and school dis-

tricts, and an equitable distribution of teachers within schools and within the whole state of

2IThese allocations are considered thought experiments in this paper and not implementable policies.
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North Carolina. By construction, all counter-factual assignments leave the average outcome
unchanged because teacher and classroom inputs enter as additively separable inputs into
the education production function (Model 16). Therefore, the test score gains that some of
the classrooms realize must translate into test score losses for other classrooms.

Table 5: Simulation of counter-factual teacher assignments

(1) (2) (3) (4)
Math test score Reading test score
distribution distribution

pc75-pc25  pc90-pcl0 pc75-pc25  pc90-pcl0

(I) Original teacher allocation

Original test score distribution 0.656 1.252 0.609 1.166
(IT) Simulation 1: Random teacher allocation within schools

Simulated test score distribution 0.603 1.156 0.579 1.110

Difference to original -0.053 -0.096 -0.030 -0.055

Change relative to original -8% -8% -5% -5%
(III) Simulation 2: Random teacher allocation within districts

Simulated test score distribution 0.575 1.103 0.562 1.079

Difference to original -0.081 -0.150 -0.047 -0.086

Change relative to original -12% -12% -8% -1%
(IV) Simulation 3: Random within state

Simulated test score distribution 0.568 1.089 0.554 1.067

Difference to original -0.088 -0.163 -0.055 -0.099

Change relative to original -13% -13% -9% -8%

Note: This table shows simulation results for math and reading test scores. The outcomes are the
average differences in test score outcomes between a classroom at the bottom and a classroom at
top quartile of the performance distribution (“pc75-pc25”), or between a classroom at the bottom
decile and a classroom at the top decile of the performance distribution (“pc90-pcl10”). I simulate
three different counter-factual teacher assignments: random allocation of teachers within schools
(Panel IT), random allocation of teachers within school districts (Panel I1T), and random allocation of
teachers within the whole state of North Carolina (Panel IV). Panel I presents summary statistics
of the original distribution. The simulations are based on 100 random teacher draws (without
replacement), and the results are averaged across all random draws. For details on the procedure,
see also Section 5.4.

Table 5 shows the results of the simulations. The table reports how the assignment
schemes affect the performance gap between a classroom at the 75" and 25" percentile

of the outcome distribution (interquartile range, column (1) for math and column (3) for
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reading) and the performance gap between a classroom at the 90 and 10" percentile of the
outcome distribution (column (2) for math and column (4) for reading). With respect to the
interquartile range, I find the following results: Random assignment within schools reduces
the performance gap by 0.05 standard deviations in math and 0.03 standard deviations in
reading. This is an improvement of 8 percent in math and 5 percent in reading, relative to the
original performance gap. Allowing for random allocations within school districts corresponds
to a reduction of the interquartile range by 12 percent in math and by 8 percent in reading
(0.08 standard deviations in math, 0.05 standard deviations in reading), and allowing for
random allocations within districts translates into a reduction of the interquartile range by
13 percent in math and 9 percent in reading (0.09 standard deviations in math, 0.06 standard
deviations in reading). Analyzing the gap between the classrooms at the 907 and the 10"
percentile of the outcome distribution, I find results of similar relative magnitudes.

In summary, simulating the random assignments provides a clear picture of the amount
of the test score inequality that can be attributed to teacher sorting. The exercise confirms

the importance of sorting both within and across schools.

6 Discussion

The following section discusses the method and findings of the present study in light of the

literature.

Method. The main identifying assumption of the present paper—exogenous mobility of
teachers across schools, conditional on a number of student, teacher, and school characteris-
tics —parallels the identifying assumption in the most recent value-added literature. Many
current studies identify teacher value-added based on teacher switching across schools and
classrooms (Chetty et al., 2014a,b, Rothstein, 2017, Bacher-Hicks et al., 2014). The under-
lying assumption is that conditional on student, classroom, school, and observable teacher
characteristics, the movements of teachers across and within schools are as good as random

movements. Chetty et al. (2014a,b) and Bacher-Hicks et al. (2014) show that specifications
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that rely on teacher switching produce reliable estimates of teacher value-added, although
some bias from “dynamic sorting” between teachers and students (i.e. sorting based on
unobservable time-varying student characteristics) might remain (Rothstein, 2017).%?

While the main interest of the studies by Chetty et al. (2014a) and Rothstein (2017) is to
validate measures of teacher value-added, the interest of the present study is a comprehensive
decomposition of test scores. This study, therefore, draws upon an AKM-type model that
jointly determines the teacher and school fixed effects. To assess potential biases in teacher
and school value-added, I conduct a series of Monte Carlo experiments (Andrews et al.,
2008). The AKM-type model delivers similar results for the estimated standard deviations of
teacher value-added compared to the results by Chetty et al. (2014a) and Rothstein (2017),

which are based on a different method to recover value-added.?

Results. In line with the literature, I find that teacher sorting is substantial despite North
Carolina’s state-wide pay schedule that allows for only small variations in teacher pay across
and within schools. Several studies conclude that teacher pay is only one—and probably not
the most important—factor that explains sorting patterns across schools. Other characteris-
tics of the workplace, such as student ability, play an important role in teachers’ labor market
behavior (Clotfelter et al., 2011, Boyd et al., 2013). This finding is not even particular to
the teacher labor market. Evidence on other occupations shows that workers’ remuneration
is only one, and sometimes a minor, variable that explains worker switches across firms (Fox,

2010, Bonhomme et al., 2016).

22The estimation procedure outlined in detail by Chetty et al. (2014a) proceeds in several estimation steps:
In a first step, the authors compute a teacher-level residual as the predicted classroom-level test score net of
student characteristics and school fixed effects; in a second step, they compute teacher value-added in year ¢
as the predicted value from a regression of the teacher-level residual in year ¢ on the teacher-level residuals
prior to year t. The second step accounts for changes in teacher value-added over time and the fact that
prior-year residuals predict current teacher value-added only with error.

23The standard deviations of teacher value-added in math are 0.19 in the present study, 0.19 as estimated
by Rothstein (2017) with the same data set, and 0.14 as estimated by Chetty et al. (2014a) with a different
data set. The standard deviations for teacher value-added in reading are 0.14 in the present study, 0.12
as estimated by Rothstein (2017), and 0.12 as estimated by Chetty et al. (2014a). It is important to note,
however, that the goal of the present paper is to provide an aggregate analysis of sorting. This model should,
at this point, not be used to evaluate individual teachers since assessing the validity of teacher-level value-
added is beyond the scope of this paper. See also the discussion by Horvith (2015) on measuring teacher
value-added in the presence of sorting.
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As the main result of the paper, I show that teacher, school, and student sorting contribute
substantially to the across-classroom variation in test score outcomes. Sorting explains 17
percent of the across-classroom variance in math test scores, and teacher quality accounts
for one-third of this contribution. This fraction seems large, compared to results from other
settings. In a related study, Mansfield (2015) investigates teacher sorting within and across
North Carolina’s public high schools. He finds that teacher sorting contributes 3.1 percent to
the test score gap between a student at the top and the bottom decile of student preparedness.
By contrast, I find that teacher sorting accounts for 13 percent of the test score gap in math
and for 8 percent of the test score gap in reading between a classroom at the bottom and one
at the top decile of the test score distribution. The results from the two studies, however, do
not necessarily contradict each other. First, as Mansfield (2015) himself points out, the role
of teacher-student sorting might differ across grade levels. Second, substantial heterogeneity
across courses might exist; in the current paper, teacher quality seems more important in
math compared to reading. At the high school level, where students have even more diverse
subjects, an aggregate estimate of sorting might mask heterogeneity across subjects. Third,
Mansfield (2015) focuses on explaining differences across individual students rather than
differences across classrooms; this is appealing in a setting where each student has a variety
of classroom teachers. By contrast, in the present paper, I solely exploit across-classroom
variation in teacher quality. Further research, however, is necessary to understand differences
in sorting at different levels of schooling as well as the underlying dynamics that can explain

why such differences exist.

7 Conclusion

This paper studies teacher and student sorting across and within schools as a source of
inequality in student test score outcomes, using a data set on public elementary schools in
North Carolina. The analysis relies on an extended version of the worker-firm sorting model
that was initially proposed by Abowd et al. (1999). In total, assortative matching among

teachers, schools, and students contributes 17 percent to the across-classroom variation in test
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scores. Investigating the channels of sorting, I find that one-third of this contribution is due
to teacher sorting, both within and across schools. Furthermore, I document heterogeneity
in sorting patterns across regions. In large cities, student sorting to schools, rather than
teacher sorting, is one of the main drivers of education inequality.

From a methodological perspective, further research might consider a more flexible model
of education production. In particular, a critical assumption of the AKM-type approach is the
additive separability between school, teacher, and student inputs. The model can be extended
to allow for match effects between students and teachers or between teachers and schools.
Recent econometric frameworks study match effects in the AKM framework (Bonhomme
et al., 2016) as well as reassignment policies in the presence of match effects (Graham et al.,
2007, 2010, Graham, 2011, Graham et al., 2014, 2016). Adopting such frameworks to the

current problem provides a promising avenue for future research.
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A.1 Figures

Figure A.1: Panel balance

Distribution of the number of years per teacher

.2
1

Fraction

0 5 10 15
Number of years that a teacher is observed in the sample

number of teachers = 33489, avg number of years in the sample = 3.7
teacher-year observations = 123765

Distribution of the number of years per school

Fraction
2
1

0 5 10 15
Number of years that a school is observed in the sample
number of schools = 1433, avg number of years in the sample = 11.36

Note: The figure displays the number of years that a teacher is present in the sample (top panel)
as well as the number of years that a school is present in the sample (bottom panel).
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Figure A.2: Moving frequencies

Distribution of the number of moves per teacher,
conditional on moving

Fraction

1 2 3 and more
Number of moves

number of teachers = 33489, fraction movers = .19
avg number of moves per teacher = .22, avg conditional on moving = 1.2

Distribution of the number moves per school

Fraction
04
1

.02
1

0 10 20 30 40
Number of total moves

number of schools = 1433, avg number of moves per school = 10.37
fraction with: at least 1 move = .96, at least 5 moves = .81, at least 10 moves = .48

Note: The figure shows the number of moves per teacher, conditional on moving at least once (top
panel) and the number of moves per school (bottom panel, inmoves and outmoves combined) for
the estimation sample.
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A.2 Tables

Table A.1: Variance components

(I) Variances (main effects)

Var(student preparedness) Var(X/,y)
Var(teacher quality) Var(fey(ip + V}(,"t)t(S )
Var(school quality) Var(agy + Wé(i,t)tp)

(II) Covariances (sorting)

(II.A) Teacher sorting to schools and students
2Cov(teacher quality, student preparedness) 2Cov((pigy + Vigd)s Xiy)
2Cov(teacher quality, school quality) 2Cov((wrtiy + Vignd), (s + Wi )

(I1.B) Student sorting to schools
2Cov(student preparedness, school quality) 2Cov(Xivs (asan + Wiinp)

Note: This table provides an overview over the variance components of interest, as derived from a
variance decomposition of Model 1. For details, see Section 3.
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Table A.3: Summary statistics at the student-year level

Mean SD Min Max Obs

Gender

female 0.5 0.5 0 1 2,619,339
Age (in years) 1037 1 7 17 2,619,548
Ethnicity

white 0.6 0.49 0 1 2,619,548

black 0.28 0.45 0 1 2,619,548

hispanic 0.07 0.25 0 1 2,619,548

other 0.06 0.23 0 1 2,619,548
Parental education

no high school 0.11  0.31 0 1 1,944,867

high school 0.47 0.5 0 1 1,944,867

up to community college 0.05 0.22 0 1 1,944,867

trade or business school 0.11  0.31 0 1 1,944,867

4-year college 0.21 0.41 0 1 1,944,867

graduate school 0.05 0.21 0 1 1,944,867
Free/reduced-price lunch

eligible 0.46 0.5 0 1 2,352,214
Academically gifted

gifted 0.13 0.33 0 1 2,613,106
Academically disadvantaged

combined 0.06 0.23 0 1 2,615,731

reading 0.04 0.2 0 1 2,619,548

writing 0.04 0.19 0 1 2,619,548

math 0.02 0.14 0 1 2,619,548
Limited english proficiency

yes 0.04 0.2 0 1 2,610,130
Baseline scores

math 0.03 0.97 -17.44 447 2,080,597

reading 0.03 0.98 -17.24 5.24 2,111,377

math: missing 0.21 0.4 0 1 2,619,548

reading: missing 0.19 04 0 1 2,619,548
Outcomes

reading score 0.02 099 -421 3.14 2,619,548

math score 0.03 0.99 -4.33 3.66 2,619,548
Teacher experience

0 years 0.05 0.22 0 1 2,619,548

1-2 years 0.12 0.32 0 1 2,619,548

3-5 years 0.14 0.35 0 1 2,619,548

6-11 years 0.28 0.45 0 1 2,619,548

12 and more years 0.41 0.49 0 1 2,619,548
Class size 21.9 3.7 10 30 2,619,548
School composition

Fraction FRL 0.41 0.24 0 1 2,619,548

Fraction ethnicity white 0.6 0.27 0 1 2,619,548

Average baseline test score reading 0.02 0.25 -1.24 1.65 2,619,548
Average baseline test score math 0.03 027 -1.62 1.74 2,619,548

Note: Information on free/reduced-price lunch is missing in 1997-1998. Information on parental
education is missing in 2007-2011.
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Table A.4: Descriptive evidence: Components of test score variances by type of region

(1)

(2)

(3)

(4) ()

Large Mid-size  Urban Town Rural
city city fringe
(I) Math test scores
Test score average -0.04 0.02 0.11 -0.03 0.03
Total test score variance 1.12 1.06 0.96 0.93 0.90
Contribution to total test score variance (in % )
Between-school 14% 12% 10% 9% 8%
Between-classroom-within-school 15% 12% 12% 13% 12%
Within-classroom 1% 76% 79% 7% 80%
(IT) Reading test scores
Test score average -0.07 0.01 0.09 -0.03 0.02
Total test score variance 1.09 1.05 0.96 0.94 0.92
Contribution to total test score variance (in % )
Between-school 14% 12% 9% 8% ™%
Between-classroom-within-school 12% 10% 9% 10% 9%
Within-classroom 74% 78% 82% 81% 84%
Student-year-observations 203,966 653,633 663,470 386,934 676,709
Classroom-year-observations 9,682 30,906 30,297 19,058 32,203
Number of schools 83 307 281 249 441
Avg. # of classroom-year obs. per school 117 101 108 7 73
Avg. class size 21 21 22 20 21

Note: Decomposition of raw variances of math test scores and reading test scores into the between-
school component, the between-classroom-within-school component, and the within-classroom com-
ponent. The test scores are standardized at the year-by-grade level with a mean of 0 and a standard
deviation of 1. The definition of the type of region is based on the geographic location of the school,
and provided by the NCERDC. Only schools with at least 10 movers in the sample period and with
non-missing information on the type of region are included in the sample. For schools that switch
their type of region during the sample period, I use the oldest available type of region.
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Table A.5: Standard deviations of estimated measures of student preparedness, teacher, and school
quality

(1) (2) (3)

Measure Standard deviation
Math  Reading

Student preparedness X4 0.352 0.345
Teacher quality
Teacher value-added fi; 0.191 0.138

N

Teacher experience Vi 0.018 0.010
School quality

School effects Qg 0.123 0.103

School composition Wyp  0.017 0.029

Note: The table presents the standard deviations of the estimated measures of student preparedness,
teacher quality (value-added and experience), and school quality (school effects, school composition
in terms of student characteristics). The estimated measures come from an OLS estimation of
Model 16. For definitions of the variables, see Section 3.3. For each of the estimated measures,
I compute the standard deviation of the estimated measure. E.g., for teacher value-added (fi;), I

compute the standard deviation as o, = \/ % Z}]:1(ﬁj — f1;)?
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Table A.6: Estimates of the education production function

(1) (2) (3) (4)

Math Reading

Coeft. SE Coeft. SE
Baseline test score reading 0.232  (0.004) 0.362 (0.004)
Baseline test score math 0.367 (0.004) 0.250 (0.004)
Baseline test score reading (squared) 0.013 (0.006) -0.013  (0.005)
Baseline test score math (squared) -0.004  (0.005) -0.010 (0.004)
Missing: Baseline test score reading 0.000 (0.003) 0.025 (0.003)
Missing: Baseline test score math -0.008 (0.003) -0.005 (0.003)
Female 20.004 (0.008)  0.099 (0.007)
Eligible for free/reduced-price lunch (FRL) -0.199  (0.008) -0.205 (0.007)
Missing: FRL 20.030 (0.008)  -0.024 (0.007)
Ethnicity white 0.228 (0.010) 0.219 (0.009)
Parental education high school or less -0.057 (0.005) -0.029 (0.005)
Missing: Parental education 0.016 (0.006) -0.001  (0.005)
Age in years -0.131  (0.006) -0.109  (0.005)
Limited English proficiency 0.014 (0.014) -0.286  (0.013)
Gifted student 0.530 (0.008)  0.419 (0.007)
Learning disadvantaged -0.196 (0.013) -0.485 (0.012)
Teacher experience (reference: 12 years or more)
Teacher experience: 0 years -0.086  (0.006) -0.048  (0.005)
Teacher experience: 1-2 years -0.020  (0.005) -0.014  (0.004)
Teacher experience: 3-5 years 0.001 (0.004) 0.001 (0.004)
Teacher experience: 6-11 years 0.004 (0.003) 0.003 (0.003)
Class size 20.009 (0.000)  -0.007 (0.000)
School: Fraction FRL 0.066 (0.013) 0.056 (0.011)
School: Fraction ethnicity white 0.067 (0.016) 0.119 (0.015)
School: Average baseline test score reading -0.020 (0.010) -0.049  (0.009)
School: Average baseline test score math 0.049 (0.009) 0.065 (0.008)
Grade (reference: grade 3)
Grade 4 0.113 (0.007)  0.089 (0.006)
Grade 5 0.242 (0.012)  0.188 (0.011)
Teacher fixed effects Yes
School fixed effects Yes
Year dummies Yes
Number of classrooms 122,896
Number of teacher fixed effects 33,155
Number of school fixed effects 684

Note: Parameter estimates based on Model 16. The dependent variables are end-of-grade test scores
in math and reading. Test scores are standardized at the year-by-grade level. Analytic standard
errors are in parentheses. The model includes both teacher and school fixed effects. The sample is
restricted to the largest connected set of schools. School fixed effects are computed for schools with
at least 10 in- or outmoves in the sample period. All remaining schools are pooled into the reference
category. Therefore the number of school fixed effects is lower than the number of schools in the
sample. Based on a sample of 1,376 schools and 33,155 teachers. Estimated using the command

felsdvreg in STATA.
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Table A.7: Variance decomposition (math and reading): All teachers (robustness)

SO ) 3) )

Math Reading

Test score average 0.003 0.000
Test score variance across classrooms 0.241  100% 0.210  100%
(I) Contribution of variances (main effects) 0.186 76.9% 0.157 75.0%

Var(student preparedness) 0.124 51.4% 0.120 57.1%

Var(teacher quality) 0.046  19.1% 0.026  12.4%

Var(school quality) 0.015  6.4% 0.012  5.5%
(II) Contribution of covariances (sorting) 0.041 16.9% 0.040 19.1%

(II.A) Teacher sorting to schools and students ~ 0.016  6.6% 0.013  6.3%
2Cov(teacher quality, student preparedness)  0.022  8.9% 0.017  8.0%
2Cov(teacher quality, school quality) -0.005 -2.3% -0.003  -1.7%

(I.B) Student sorting to schools
2Cov(student preparedness, school quality) 0.025 10.3% 0.027 12.8%

(III) Remaining variance and covariance terms 0.015  6.2% 0.012 58%

Number of school effects 657
Number of teacher effects 22,299

Note: The table shows results of the variance decomposition, based on Model 16. The dependent
variables are end-of-grade test scores in grades 3-5 in math and reading. All specifications control
for year and grade dummies. The decomposition sample contains only high turnover schools (i.e.
schools with at least 10 teacher moves during the sample period).
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A.3 Technical appendix

A.3.1 Tests for teacher-school match effects

One identifying assumption of the AKM-type model is the additive separability of teacher
and school fixed effects. To test whether this assumption is a reasonable approximation, I
follow Card et al. (2013) and compare the model fit of Model 16 with the model fit of a
model that includes the full set of teacher-by-school fixed effects. I estimate both models
in a dataset that has at least two classrooms in each teacher-by-school cell, such that the
teacher-by-school fixed effects have a meaningful interpretation. The resulting data set has
108,364 teacher-year (i.e. classroom) observations.

The model fit of the AKM-type model is almost as good as the model fit of the fully
interacted model. The R? is 0.8449 in the AKM-type model and 0.8512 in the fully interacted
model. The root mean squared error is 0.2008 in the AKM-type model and 0.2070 in the
fully interacted model. I therefore conclude that the AKM-type model conveys a reasonable
approximation and that teacher-school match effects are unlikely to affect the aggregate

results on the contribution of sorting.

A.3.2 DMonte Carlo experiment

I use a Monte Carlo experiment to assess whether the estimation recovers the true variances
and covariances of teacher and school fixed effects, given the moving patterns in the data. As
suggested by Abowd et al. (2004), I use an experiment that preserves the moving behavior
that is observed in the data. I proceed as follows: First, I run Model 16 and save all coefficients
on the observed characteristics. I use these coefficients to construct a fitted outcome net of
school and teacher effects. Second, I remove the actual outcome (as observed in the data)
from the data. Third, I randomly and independently draw teacher and school effects. The
draws come from distributions which resemble the distributions of teacher and school effects
as estimated in the first step (see the table notes of Table A.10 for details). Similarly, I draw

idiosyncratic error terms (see the table notes of Table A.10 for details). Fourth, I construct
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a simulated outcome, based on the fitted outcome from the first step, the simulated teacher
and school effects, and the simulated error terms. I run Model 16 again, but now substitute
the actual outcome with the simulated outcome. Finally, I compute the variance-covariance
matrix of the teacher and school effects from the regression outcome. I repeat the procedure
100 times, and for each type of school (more than one teacher move during the sample
period, mover than five moves, more than 10 moves). Moreover, as suggested by Andrews
et al. (2008), restricting the sample to movers (i.e. teachers who move at least once during
the sample period) may reduce the bias in the person fixed effects. Therefore, I also compute
the results separately for movers.

Table A.10 presents the results of the Monte Carlo experiment. Column (1) presents the
median values of the variances in teacher and school effects as well as the median of their
covariances based on the distribution of 100 “true” (i.e. simulated) teacher and school effects.
Column (2) presents the medians from running Model 16 with the simulated outcome as the
dependent variable. Column (3) shows the median of the differences in the variances and
covariances from the 100 replications. Column (6) reports the mean relative bias. The three
different panels show the results for the different schools samples (Panels I-I1I) as well as for
movers only (Panel IV).

The sample restrictions help in correcting the variance estimates of both teacher and
school effects towards their true variances. Considering the most restrictive sample of schools,
i.e. schools with at least 10 teacher moves, reduces the mean relative bias in the variance
of the school effect from 42 to 16 percent. Restricting the sample to movers reduces the
mean relative bias in the variance of the teacher effect from 39 to 18 percent. The bias
in the covariance between school and teacher effects almost disappears when using these
restrictions. Thus, the sample restrictions suggested by Andrews et al. (2008) are a useful

tool to reduce biases in the estimation of both unobserved school and teacher effects.
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Table A.10: Monte Carlo experiment

(1) (2) (3) (4)

Simulation Monte Carlo Median of Mean

median median difference relative
bias

(I) All schools

Var(teacher effect) 0.040 0.055 0.016 39%

Var(school effect) 0.010 0.014 0.004 42%

2Cov(teacher effect, school effect) 0.000 -0.007 -0.007 -
(IT) Schools with at least 5 moves

Var(teacher effect) 0.040 0.054 0.014 35%

Var(school effect) 0.010 0.013 0.003 27%

2Cov(teacher effect, school effect) 0.000 -0.004 -0.004 -
(IIT) Schools with at least 10 moves

Var(teacher effect) 0.040 0.053 0.013 33%

Var(school effect) 0.008 0.009 0.001 16%

2Cov(teacher effect, school effect) 0.000 -0.002 -0.002 -

(IV) Schools with at least 10 moves, only movers

Var(teacher effect) 0.040 0.047 0.007 18%
Var(school effect) 0.009 0.010 0.002 17%
2Cov(teacher effect, school effect) 0.000 -0.002 -0.002 -

Note: The table shows results of a Monte Carlo experiment. Panel I presents school effects for
all schools; panel II presents school effects for all schools with more than 5 teacher moves, and
a joint school effect for the remaining schools with less than 5 moves; panel III computes school
effects for all school with more than 10 moves, and a joint school effect for the remaining schools
with less than 10 moves; panel IV presents the results for movers only. The data is is simulated as
follows: I assume the teacher and school fixed effects to be normally and independently distributed
with mean 0 and standard deviations o; = 0.2 for the teachers and o5 = 0.1 for the schools. The
error is defined as a composite error, which consists of shocks to teacher value-added, shocks to
school value-added, and idiosyncratic shocks to classroom performance, i.e. € = ¢st + Vj¢ + €cjsts
where ¢g ~ N(0,0.01), vjy ~ N(0,0.02), and ecjs¢ ~ N(0,0.16). The simulation is based on
100 independent draws from these distributions. Column (1) shows the median of the simulated
distribution in the data, column (2) shows the median of the distribution of effects as recovered
based on Model 16 in the Monte Carlo experiment, column (3) shows the median of the distribution
of differences between the estimate from the Monte Carlo experiment and the simulated effect, and
column (4) shows the mean relative bias, where the mean is computed across all 100 draws.

o4



A.3.3 Simulation of counter-factual teacher assignment schemes

To derive the outcome distribution under counter-factual teacher assignment schemes I im-
plement the following simulation design. First, after estimating Model 16, I compute for
every classroom the outcome net of teacher effects, i.e., I subtract the teacher effect from
the observed outcome. Second, I create 100 random assignments of teachers to classrooms
for three different counter-factual assignment schemes (i.e., random within schools, random
within school districts, and random within the state of North Carolina). The teachers are
drawn without replacements, and the random assignments are constructed separately for each
year. Third, for each scenario, I compute 100 new test score outcomes for each classroom
based on the observed outcome, net of the original teacher effect, and the 100 simulated

teacher effects. I then average across all 100 draws. The results are reported in Table 5.

95



	Introduction
	Background
	Empirical approach
	Model
	Identification
	Estimation
	Variance decomposition
	Data
	Results
	Descriptive evidence of variance contributions
	Estimation of the education production
	Results of the variance decomposition
	Main results
	Heterogeneity of sorting patterns across regions

	Simulation of counter-factual assignments

	Discussion

	Conclusion
	Figures
	Tables
	Technical appendix
	Tests for teacher-school match effects
	Monte Carlo experiment
	Simulation of counter-factual teacher assignment schemes


