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Abstract 
 

This paper considers the problem of a water management authority faced with the threat of a 

drought that hits at an uncertain date. Three management policies are investigated: i) a laissez-

faire (open-access) policy of automatic adjustment through a zero marginal private net benefit 

condition, ii) a policy of optimal dynamic management ignoring the threat of the drought and 

relying on automatic adjustments through a zero marginal social net benefit condition, iii) an 

economically optimal dynamic policy taking account of the threat of a drought. In particular, we 

show that the optimal pre-drought steady-state equilibrium stock size of water under policy iii) is 

smaller than under policy ii) and, hence, a precautionary stock size should not be built up prior to 

the drought.  
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1. Introduction 

Each year deficit rainfall and droughts takes a heavy toll in terms of destroyed crops, famine, fires 

and losses of human life. These events may range in severity from regional incidences lasting for 

a short period of time and confining themselves to crop destruction
4
 to disastrous droughts.

5
 The 

drought periods may be single event phenomena´s or recurring events and may be more or less 

expected events. Nowadays it is common to link the occurrence of droughts to climate change 

issues and there exist more or less efficient measures to deal with them. To the extent that such 

measures are in use, they may include institutionalized systems of scarce water distribution, 

various forms of water rationing as well as scarcity pricing of water.  

 

The ability to withstand the negative consequences of droughts is related to the applied 

mechanisms for managing water extraction. In some countries water is typically priced to retail 

extractors on the basis of average production cost where total cost of a service is determined 

using historical accounting statistics. Such a system is not very responsive to a situation of water 

scarcity since there is no mechanism that induces reduced water extraction when the drought hits. 

Therefore, emergency measures are necessary and these measures may include rationing or more 

advanced systems of water reallocation.
6
 

 

                                                                                                                                                              
3
 Department of Food and Resource Economics, University of Copenhagen , Rolighedsvej 25, Frederiksberg, e-mails: 

esam@ifro.ku.dk, fje@ifro.ku.dk 
4
 Examples are the California drought in 1991 and the current forest fires in the United States. 

5
 As the ones that took place in the Sahel region on the southern edge of Sahara in 1968-73 and in Vietnam and 

Ethiopia in 2012-2015. 
6
 An example of an advanced allocation system is the 1991 California Drought Water Bank that efficiently alleviated 

acute problems of water shortage in California during the spring of 1991 by buying water from low valued 
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More advanced systems of water pricing include marginal cost pricing of scarce water resources 

with peak load pricing as an example.
7
 Systems like these may be efficient in dealing with water 

scarcity but they do not necessarily solve the long-run management problems of water extraction 

during a drought. More elaborate systems of tradable water rights spanning all possible states of 

nature
8
  have, however, the potential of dealing with problems of a drought if the rights are 

extended to cover futures markets (see e.g. Berck and Lipow, 1994, Brewer et al, 2007, Hanah 

and Stryjewski, 2012 and Zilberman and Schaengolf, 2005). 

 

In this paper groundwater is treated as a renewable resource that occasionally may become a non- 

renewable resource due to a drought and the drought is basically treated as a stochastic event 

requiring optimal management under uncertainty. Long-run management may, therefore, include 

policies such as the keeping a precautionary stock of water or, as it turns out, the contrary. We 

consider a stylized problem of groundwater management under uncertainty, where there is a 

probability of a shortfall of precipitation followed by normal conditions. Thus, we consider 

optimal extraction of a groundwater resource under the assumption that the time at which a 

drought hits is unknown. One main result following from this analysis is that the optimal pre-

drought stock size is lower when the threat of a drought is taken into account. This result can be 

explained by the fact that two counteracting effects exist when dealing with droughts. First, the 

threat of a drought implies that it is optimal to increase current extraction to capture higher net 

benefits before a temporary resource collapse and this can be labelled an extinction effect. 

                                                                                                                                                              
agricultural uses and selling water to higher valued agriculture and municipal and industrial water uses (see Howitt, 

1994 and 1998 and Hansen et al, 2013).  
7
 See e.g. Hanke and Davis (1971) and (1973), Feldman (1975), Mann and Schlenger (1982) and  Zarnikau (1994), 

Reynoud (2010), Garcia and Reynoud (2004) and Kneese (2013). 
8
 Debreu contingent markets provide an example. 
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Second, due to a desire of fast resource recovery after the drought is over current extraction is 

decreased so as to build up a buffer to be drawn upon later. This effect can be called a recovery 

effect. In this paper we formally show that the extinction effect dominates the recovery effect for 

groundwater. This implies that the current extraction increases and that the optimal pre-drought 

stock size decreases when the threat of a drought is included.  

 

A considerable amount of economic groundwater literature has considered stochastic recharge for 

a single aquifer and in this literature there are two main strands. The first strand of literature uses 

optimal control theory on continuous time problems and is represented by, e.g., Tsur and 

Graham-Tomasi (1991), Tsur and Zemel (1995) and (2004), Roseta-Palma and Xepapadeas 

(2004) and Rubio and Casino (2001). The second strand of literature is based on a dynamic 

programming formulation of discrete time models and examples are Knapp and Olson (1995) and 

(1996) and Krishnamurthy (2016). In this paper we follow the first strand of literature but instead 

of stochastic recharge we consider an unknown time for the occurrence of a drought. Thus, we 

seek to contribute to the existing economic literature on groundwater management under 

uncertainty. 

 

The rest of the paper is organized as follows. In section 2 we describe the three policies we 

consider and the basic model assumptions while section 3 investigates an open-access scenario. 

Section 4 contains a dynamic management problem where the threat of a drought is ignored and 

section 5 analyzes a problem where the threat of a drought is included. In section 6 the results of a 

numerical simulation of the three policies are presented, and the main results and basic 

assumptions are discussed in section 7. Section 8 summarizes the main conclusions of the paper. 
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2. Policies and assumptions 

Management policies 

In this paper we consider three management policies of increasing sophistication: i) a laissez faire 

policy corresponding to open-access, ii) a policy of optimal dynamic management where the 

threat of a drought is ignored iii) an economically optimal policy taking account of the threat of a 

drought. Our focus in the following is to compare steady-state equilibrium stock sizes under these 

three policies, and, in particular, to investigate whether a buffer or precautionary stock of water 

should be built up prior to the drought to relieve the burden of the event once it hits.   

 

The laissez faire policy corresponds to letting private agent´s select extraction levels without 

intervention by management authorities. This policy is identical to an unregulated optimum and 

in section 3 we will argue that externalities arise under this management situation. The policy 

seems to be in line with water management taking place in some countries where groundwater 

basins are exploited by a large number of independent pumpers extracting from a common 

groundwater resource. In this setting nothing is normally done when a drought hits and the aquifer 

is left to converge towards an open-access equilibrium. Hence, under this policy, the stock of 

water will automatically be restored to the pre-drought level after the event is over according to a 

zero marginal private net benefit condition and, thereby, scarcity rents are ignored. 

 

The second policy also ignores the threat of drought and, thus, only deals with the drought when 

it hits. However, this policy recognizes that the water resource is an asset that should be managed 

over time taking account of intertemporal opportunity costs.  Hence, we assume that nothing is 
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done when the drought hits in the sense that the policy prior to the drought is still followed during 

the event. Therefore, the manager also in this case relies on automatically restoration through a 

zero marginal social net benefit condition when dealing with a drought. However, in actual 

policies less sophisticated water rationing policies are commonly used during a drought. 

Typically, these amount to keeping a constrained level of water from the date the drought hits 

until the aquifer has regained its normal size. Policies like these are used around the world, in 

particular in countries with an organized system of public water supply. The policies may take 

various forms such as cutting water supply during specific hours of the day or prohibiting certain 

usage of water (e.g. watering of private gardens). 

  

The third policy takes account of both the threat of a drought and the intertemporal opportunity 

costs. It is the most sophisticated policy that may be implemented by prices set in accordance 

with marginal scarcity costs and this policy is identical to a full social optimum where the threat 

of the drought is fully incorporated. Water markets and pricing of water are now emerging and, in 

fact, this policy is common in many developed countries and regions around the world such as, 

for example, California. 

 

Notation and assumptions 

In the following we consider an aquifer of initial size on, 0x . It is assumed that the initial stock 

size is at a high level and 0x is identical for all three management policies. The stock of water in 

the aquifer at date t is denoted xt  and the recharge rate (emanating from precipitation), g , is 
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assumed constant and stock independent.
 9

. The social discount rate is denoted   while the 

extraction from the aquifer at date t is endogenously determined and denoted, ht
. The industry 

gross benefit of water extraction, )( thU , is assumed to increase with extraction at a decreasing 

rate, i.e. ( )tU h  with U ht' ( )  0  and 0)('' thU . It is assumed that )( thU captures the benefit of 

groundwater extraction in both the unregulated policy model and the models for the social 

optima. Thus, )( thU may be interpreted as the revenue to farmers from extracting water for crop 

production. 

 

The industry cost of water extraction, ( , )t tC x h , is assumed linearly dependent on ht such that 

( , ) ( )t t t tC x h c x h . Furthermore, it is assumed that c xt' ( )  0  and c xt' ' ( )  0  such that a larger is 

the stock of water the lower is the marginal cost of extraction. This formulation of a cost function 

is common in the economic literature on groundwater, including papers on stochastic recharge. 

From this three facts may be noted in relation to this cost function. First, the assumption that a 

larger stock size of water implies a lower marginal cost of extraction has been confirmed in many 

empirical papers on groundwater extraction (see e.g. Koundouri, 2004 for an overview). 

Therefore we do not consider the special case where '( ) 0tc x  in this paper. Second, the cost 

specification corresponds to an assumption of constant economics of scale of extraction.
10

 

Recently, Krishnamurthy (2016) have investigated the implications of non-constant economics of 

scale in extraction assuming stochastic recharge. However, when formally investigating whether a 

                                                 
9
 Note that for fisheries the natural growth (recharge rate) is stock dependent implying that G(xt) and it is normally 

assumed that G´(xt) > 0 for x < xMSY while G(xt) < 0 for x > xMSY, where xMSY is the stock size correpsoding to 

maximum sustaianble yield. 
10

 This may be seen from the fact that the average cost of extraction is equal to ( )tc x  and, therefore, this cost is 

independent of ht. 
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precautionary stock size should be built up prior to a drought (see section 5), an assumption about 

constant economics of scale in extraction is necessary. Therefore, we adopt the cost function with 

constant economics of scale of extraction in this paper. Third, we apply the same the cost function 

in all three models.  

 

We consider a drought period of length,  , starting at an uncertain date,  . The event is assumed 

to hit only once in the foreseeable future (like a “hundred-year wave”). To represent this kind of 

uncertainty we apply an exponential function which is frequently used in problems dealing with 

unknown arrival of some event (see Barlow and Proschan, 1975). The essential assumption is that 

the conditional probability of the event happening, provided that it has not already happened, 

remains constant as time proceeds. Hence, the length of the period prior to the drought does not 

matter and the distribution function is given by F t t e t( ) Pr( ) ( )     1 while the density 

function is equal to ( )f t  Pr( )  te   . During the drought we assume that the precipitation to 

the aquifer vanishes and, hence, the recharge is equal to zero as for a non-renewable resource. 

After the drought period is over normal precipitation occurs and recharge rates are restored to the 

initial level given by g . It is essential to note that we assume that the drought will happen sooner 

or later and the expected waiting time until the drought hits is equal to1/  .  

 

3. An open-access policy 

Under open-access we let a representative private agent maximize the current time period net 

benefit without taking a resource restriction into account. We let extraction of groundwater, ht, be 

the control variable and the maximization problem for period t is:  
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( ( ) ( ) )

t

t t t

h

Max U h c x h
          (1) 

From condition (1) the following first-order condition is reached: 

 '( ) ( ) 0t tU h c x           (2) 

Thus, under open-access the marginal private net benefit is set equal to zero and, as pointed out 

by Provencher and Burt (1993), condition (2) reflects that two externalities exist when 

groundwater extraction is unregulated. First, a stock externality occurs because a resource 

restriction is disregarded. Second, a pumping cost externality arises because the private agent 

does not incorporate the effect of stock size on the cost when making decisions. Both externalities 

are associated with the stock size and in section 4 and 5, where we investigate the optimal stock 

sizes, these externalities are addressed.   

 

Starting from a high initial stock size implying a low unit extraction cost, condition (2) implies 

that ght  . Hence, as time passes, the stock of water will be driven down until the pre-drought 

steady-state stock size, x , is reached. At x , the extraction ( h ) is equal to the recharge rate so 

that h g  . This is a steady-state equilibrium and the stock size will remain at this level as long 

as the recharge is equal to g .  

 

When the drought hits, the stock of water starts to decrease since there is a net extraction of 

water. During a drought period of length,  , the stock of water will decrease such that the stock 

size at date   , x  , becomes: 

 x x h dtt 



 

 



            (3) 
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During the drought the extraction of water will also decrease, since the marginal extraction cost is 

increasing. This can be seen by utilizing condition (2) to obtain: 

  ' ( )

' ' ( )
h

c x h

U h

t t

t

   0             (4) 

However, at date  , the recharge is again positive and equal to, g  and therefore the stock size 

of water starts to increase until the pre-drought steady-state stock size under open-access, x , is 

again reached.  

 

After the drought is over the extraction increases for a period until the steady state equilibrium 

stock size is obtained. Hence, for this period we have: 

 
'( )( )

0
''( )

t t

t

c x g h
h

U h


           (5) 

Thus, under open-access there is a built-in adjustment mechanism given by condition (2) to 

address the problems with a drought (a zero marginal private net benefit condition). Note that, 

water extraction is not sensitive to the size of the probability of a drought, but it is, however, 

sensitive to the length of the drought period. A longer drought period will lead to a lower 

extraction, a smaller water stock and an increased period of stock recovery.    

 

4. A policy of optimal management ignoring the threat of drought 

Under this policy we consider a management authority (a sole owner) with perpetual tenure 

managing the aquifer. It is assumed that the manager ignores the threat of a drought. The 

objective of the management authority is to maximize the present value of current and future net 

social benefit defined as the  difference between (gross) benefits, U, and costs, C . When 
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maximizing the present value of current and future net benefits ht is the control variable and xt is 

the state variable. Hence, the objective of the management authority is: 

0

max ( ( ) ( ) )
t

t

t t t
h

U h c x h e dt



         (6) 

subject to: 

           tt hgx            (7) 

          x x0 0 ( )            (8) 

The current-value Hamiltonian corresponding to this problem is: 

( ) ( ) ( )t t t t tU h c x h g h            (9) 

where  t denotes the adjoint variable.  

 

The first-order necessary conditions for a maximum are:
11

 

           '( ) ( ) 0t t t

t

U h c x
h







            (10) 

           '( )t t t t

t

c x h
x


 




            (11) 

According to (10) the marginal social net benefit is set equal to zero. By comparing condition 

(10) and condition (11) with condition (2) we see the nature of both the stock externality and the 

pumping cost externality. First, in condition (10) an adjoint variable, t , is included while this is 

not the case in condition (2). The adjoint variable captures the intertemporal opportunity cost of 

groundwater extraction. Hence the management authority takes the stock externality into account 

while this is not the case for a private agent operating under open-access.   Second, under open-

                                                 
11

 See Neher (190) for the optimality conditions for a current-value Hamiltonian. 



 12 

access a first-order condition for the state variable given by condition (11) does not exist. In 

condition (11) an important term is the marginal stock costs, '( )t tc x h , and, therefore, taking a 

first-order condition for the state variable into account corrects for the pumping cost externality.  

 

By solving condition (11) for , taking the total differential of condition (10) with respect to time, 

using condition (7) and rearranging terms, we arrive at the following relationship: 

          




)()('

)('''

tt

tt

xchU

gxchU 
          (12) 

The steady-state solution, * and *h x (where  h xt t  0 and gh * ), is characterized by: 





)()('

)('
*

*

xcgU

gxc
         (13) 

Condition (13) is known as the golden rule for optimal extraction of a renewable resource and 

this rule is carefully interpreted by Neher (1990).
12

 Basically, condition (13) expresses that the 

optimal stock of water in a steady-state equilibrium arises where the marginal internal rate of 

return of keeping an extra volume unit of water is equal to the discount rate,  . The marginal 

internal rate of return is the net return in terms of the gain of the lower extraction cost by keeping 

a marginally higher stock, gxc *)(' , shared by the net benefit forgone by not extracting an extra 

volume unit of water, i.e. *).()(' xcgU   The left hand side of condition (13) will later be referred 

to as the marginal stock cost effect.  

 

Assuming that the initial value of stock size is larger than the steady-state equilibrium stock size 

( *)0( xx  ,) the optimal solution is to bring the stock of water asymptotically along a stable arm 
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to the steady-state equilibrium stock size, x * . The optimal strategy is to set the initial extraction 

rate at a value higher than g and then let ht fall over time at a decreasing rate on an adjustment 

path towards the steady-state equilibrium value, h* . Since the extraction rate is above the 

recharge rate, the size of the aquifer will also decrease along the adjustment path and approach 

the optimal steady-state equilibrium stock size, x * . Hence, the stable arm for an initial stock size 

of water larger than the steady-state equilibrium stock size is characterized by 0,0  tt xh  . In 

the steady-state equilibrium the adjoint variable,  t
decreases at a rate equal to,  , (i.e. 

(  )  t t   ) implying a constant (current) implicit price of water.   

 

When the drought hits we assume that the manager follows the optimal policy given by condition 

(13). Hence the stock of water will decline because there is no recharge and a positive extraction. 

The rate of extraction of water will decrease over time because the marginal extraction costs 

increase due to the decrease in stock size. After the drought is over the recharge again becomes 

equal to g  implying that the stock size increase until x * is reached. Due to the increase in stock 

size, the extraction cost will decrease leading to an increase in harvest. Thus, as under open-

access, an automatic adjustment mechanism given by condition (10) exists when dealing with a 

drought (zero marginal social net benefit).     

 

5. A policy of optimal management taking account of the threat of drought 

As noted in section 2 this solution represents a full social optimum where the threat of the 

drought is incorporated. In solving this problem we must distinguish between three time periods: 

                                                                                                                                                              
12

 Neher (1990) interpret the golden rule under the assumption that U´´(ht) is constant. However, U´´(ht) does not 

enter in condition (13) so this interpretation also holds for a non-constant U´´(ht) as in this paper.  
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i) the period from until the drought hits (from t = 0 to t =  ). ii), the period during the drought 

(from t =   to t =   ).. iii), the period after the drought is over (from t =   to t ). As 

always in economics such a problem is solved by using backward induction. For all three time 

periods the control variable is denoted ht while the state variable is denoted xt . 

 

The problem after the drought is over 

At date  we are facing the same problem as discussed in section 4 and denoting the size of the 

aquifer at date    by x  , the maximum net present value of the future benefits evaluated at 

date    can be written as S h x xt t( , ; )* *

  which is the scrap value of the groundwater resource 

after the drought is over. Hence, from date,    and onwards, the aquifer is managed according 

to condition (12) with an initial groundwater stock size equal to x  .  

 

The problem during the drought 

Next, we move one step backwards in time and consider the optimization problem at date  

(shortly after the drought has hit). The optimization problem at this date may be formulated as: 

max ( ( ) ( ) )
t

t

t t t
h

U h c x h e dt

 







        (14) 

subject to:  

        x ht t             (15) 

         x x  ( )           (16) 

Condition (15) states that the change in stock size is equal to the extraction reflecting that the 

aquifer is treated as a non-renewable resource during the drought while condition (16) is a 

restriction on the initial size of the stock of water at date  .    
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The current-value Hamiltonian of the above problem is:  

( ) ( )t t t t tU h c x h h            (17) 

where the adjoint variable is denoted t . Condition (17) is to be maximized subject to the scrap 

value function, S h x xt t( , ; )* *

  covering the time periods after the drought is over.  

 

The first order necessary conditions are: 

     '( ) ( ) 0t t t

t

H
U h c x

h



   


         (18) 

       '( )t t t t

t

c x h
x


 




            (19) 

Observe that discontinuities in both ht and xt at t    the time where the drought is over occur 

because the recharge jumps from zero to g . To show this let     be the instant of time 

immediately before the drought is over and    be the instant of time immediately after the 

drought is over. By using condition (10), condition (12), condition (18) and condition (20) we get 

that: 

 
´́ ´́ (́ )U h U h c x g

     

   
 

  

 

  

 


        (20) 

where h
  

and 
 
 

are the extraction and the adjoint variable at the instant of time before the 

drought is over while ,h x
     

and 
 
 

are the extraction, the stock size and the adjoint 

variable at the instant of time after the drought is over. From condition (20) and a transversality 

condition in Seierstad and Sydsæter (1987) we get that: 
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* *( , ; )t tS h x x

x

 

   

 

  





 




 


       (21) 

Thus, because 
   
   

  there is a discontinuity in the adjoint variable at time    and by 

using condition (18) and condition (19) we get that discontinuities in ht, and xt will also have to 

exist.   

   

By solving condition (19) for , taking the total differential of condition (18) with respect to time, 

substituting condition (15) into the expression and rearranging terms, we arrive at: 

      
U h

U h c x

t

t t

' ' 

' ( ) ( )
           (22) 

As mentioned above groundwater is treated as a non-renewable resource during the drought. 

Therefore, condition (22) represents Hotelling´s rule for optimal extraction of a non-renewable 

resource and condition (22) is identical to condition (13) with 0g . From the fact that 

groundwater is a non-renewable resource during the drought it follows that xt is non-increasing 

during the drought. Furthermore, because c´(xt) < 0 it follows from condition (22) that 0h  in 

condition (22) and therefore the extraction level will be non-increasing during the drought. 

 

To simplify notation we now define the following maximum function: 

  * *

0

( ) max ( ) ( ) ( , , ) ,
t

t

t t t t t
h

F x U h c x h e dt S h x x e



 

  

 



 
   

 
    (23)  

subject to: 

(15) and (16). 
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F(xt) can be interpreted as the maximum value of the net benefit arising from the date the drought 

hits and onwards and, thus, condition (23) represents a scrap value function of the groundwater 

resource at the time where the drought hits. 

 

The problem at the initial moment of time 

Finally, we move to the initial time period. The full ex ante problem to be considered in this 

period is as follows: 

 
0 0

max ( ) ( ) ( )
t

t

t t t
h

e U h c x h e dt F x e d



  

 


  
 

  
 

      (24) 

subject to: 

      tt hgx            (25) 

      x x0 0 ( )            (26) 

By integrating the objective function by parts, it can be reformulated as:
13

 

  ( )

0

max ( ) ( ) ( )
t

t

t t t t
h

U h c x h F x e dt 


         (27) 

The corresponding current-value Hamiltonian is: 

( ) ( ) ( ) ( )t t t t t tU h c x h F x g h             (28) 

where  t denotes the adjoint variable 

 

The necessary first order conditions are: 

      '( ) ( ) 0t t t

t

U h c x
h







            (29) 

                                                 
13

 See Dasgupta and Heal (1974) and Amundsen and Bjørndal (1999) 
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       '( ) '( ) ( )t t t t t

t

c x h F x
x


    




            (30) 

Observe that a discontinuity in ht and xt at t  also exists because the recharge rate jumps form 

g  to zero. To see this we let    denote the instant of time just before the drought hits while   is 

the instant of time just after the drought has hit. By using the same procedure as for condition 

(20) we get:  

 
´́ ´́ (́ )U h U h c x g

  

 
 

  

 


         (31) 

where h
 

, x
 

and 

  are the extraction, the stock size and the adjoint variable at the  instant of 

time before the drought hits and h
 

and 

  are the extraction and the adjoint variable at the 

instant of time after the drought has hit. By using condition (31) and the same transversality 

condition as above we find that: 

 (́ )F x 
             (32) 

From condition (32) we have that 
 
   and by using this fact in condition (29) and (30) we 

have that discontinuities in the extraction and the stock size arise at the time when the drought 

hits.  

 

Condition (32) captures how the threat of a drought will affect the extraction level prior to the 

event. Clearly, transferring an extra unit of the groundwater resource from the time period prior to 

the drought to the time period during the drought will have a positive effect on the scrap value 

function (F´(xt) > 0). By comparing this value with the marginal benefit of extraction before the 

drought hits, given by condition (29), we obtain that: 



 19 

  (́ ) ( ) (́ )U h c x F x            (33) 

The intuition for condition (33) is straightforward. At time t   (the time where the drought hits) 

there is a discontinuity in the recharge rate. If the extraction is to be constant this discontinuity 

will have to generate a decrease in the stock size equal to the missing recharge in the steady-state 

equilibrium. This decrease in xt will lead to an increase in extraction costs because c´(xt) < 0 and, 

therefore, the net benefit of water extraction will decrease during the drought. This decrease in the 

net benefit can be minimized by decreasing extraction at t  . Therefore, U´(ht) will have to 

increase to compensate for the increase in extraction costs. Thus, we must that 

(́ ) ( ) (́ )U h c x F x    as stated in condition (33).  

 

By solving condition (30) for , taking the total differential of condition (29) with respect to time, 

using condition (25) and rearranging terms, we obtain the following condition: 

      
 














)()('

))()('()('

)()('

)('''

tt

ttt

tt

tt

xchU

xchUxF

xchU

gxchU 
    (34) 

According to condition (34), extraction will decrease over time and the stock will decrease from 

the initial level, 0x , until a steady-state equilibrium extraction level, 
~
h , and  a stock size, ~x , is 

reached.  

 

The steady-state solution (with  h xt t  0 and gh 
~

) is characterized by: 

 
'( ) '( )

'( ) ( ) '( ) ( )

c x g F x

U g c x U g c x


 


  

 
       (35) 

Condition (35) represents a modified golden rule for optimal management of a groundwater 

resource when the threat of a drought is incorporated. It essentially says that the rate of return 
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from keeping a marginally higher stock size must be equal to the discount rate plus the failure 

rate,  . The net benefit of keeping an extra unit of water in the stock is represented by the left 

hand side of condition (35) and consists of two elements. The first element is the stock cost effect 

described in condition (13). The second element is the expected future benefit of an extra unit of 

water after the date the drought has hit. These benefits accrue due to an “investment” 

of ))~()('( xcgUt  , which is equal to the net benefit foregone by not extracting a marginal unit 

of water shortly prior to the drought hits. By comparing the left hand side of condition (13) and 

condition (35) we see that the second term is an additional element arising when the threat of the 

drought is taken into account. Note that on the right hand side of condition (35) the failure rate, 

 , acts like an increment to the discount rate. 

 

It may be observed that if 0  condition (35) reduces to condition (13). It can also be seen that 

provided 0)~(' xF  condition (35) reduces to:  

  



)~()('

)~('

xcgU

gxc
        (36) 

This expression corresponds to an expression in Dasgupta and Heal (1974) and Reed (1984), and 

condition (36) states that if the scrap-value function, )( F , is zero or unaffected by decisions 

taken prior to the drought, the failure rate,  , acts like an increment to the discount rate. Hence, 

when 0)~(' xF uncertainty implies heavier discounting and a lower stock of water in a steady-

state equilibrium.  

 

A precautionary stock size? 
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Next, we consider how ~x is related to x* (the steady-state stock size under policy ii)). This may  

be investigated by considering how the steady-state stock size responds to changes in . By 

taking the implicit derivative of condition (35) we obtain: 

 
   

 

0

)~()('

)~('()~('')~()~('()~(')~(')~('')~()('(

)~()('

)~('
1

~

2

2




















xcgU

xcxcxcxUgxcxFxFxcgU

xcgU

xF

d

xd


 (37) 

Inspection of signs shows that the denominator in condition (37) is negative while the numerator 

is strictly positive (for  0 0, ) due to the fact that U h c x F x' (
~

) (~) ' (~)  (condition (33)).  

Hence, an increase of the failure rate,  , leads to a decrease in the optimal pre-drought steady-

state equilibrium stock size and this implies that it is always optimal to keep a steady-state 

equilibrium stock size, ~x , that is smaller than or equal to x * .  Thus, it is not optimal to build up a 

precautionary stock of water to be used when the drought hits.  

 

The result in condition (37) seems counter-intuitive but it can be explained by introducing some 

results from existing literature on renewable resources. Here we start by considering Sutinen 

(1981), Reed (1984) and Tsur and Zemel (1995) who all investigate the possibility of total 

extinction of a renewable resource. Sutinen (1981) analyze total extinction of a fish stock while 

Reed (1984) discusses a forest for which a risk of fire exists. Tsur and Zemel (1995) consider the 

possibility of total extinction of a groundwater resource due to an irreversible event. In all these 

papers it is shown that the optimal steady-state equilibrium stock size prior to the uncertain event 

will be lower when the possibility of extinction is included. The intuition for this result is that 

with a risk of extinction it is optimal to increase the extraction prior to the resource collapse to 

capture more net benefit before extinction. Thereby, the current stock size decreases and is moved 
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towards the open-access level. This kind of behavior can be called an extinction effect and 

Sutinen (1981), Reed (1984) and Tsur and Zemel (1995) all formally show that this effect is 

identical to an increase in the discount rate. In our model the extinction effect is captured by   in 

condition (35) and we reach the same conclusion as in Sutinen (1981), Reed (1984) and Tsur and 

Zemel (1995). However, Sutinen (1981), Reed (1984) and Tsur and Zemel (1995) consider a 

resource that becomes totally extinct. Contrary to this our problem allows for recovery of the 

resource after the uncertain event. Thus, our result in condition (37) is not directly comparable 

with the results in Sutinen (1981), Reed (1984) and Tsur and Zemel (1995).  

 

More related to the analysis in our paper are the results in Amundsen and Bjørndal (1999) who 

study a fishery that is subject to a temporary collapse after which the fish stock recovers. 

According to Amundsen and Bjørndal (1999) two counteracting effects arise with a temporary 

collapse of a fish stock. First, as in Sutinen (1981), Reed (1984) and Tsur and Zemel (1995) an 

extinction effect exists leading a lower pre-collapse stock size and a higher pre-collapse 

extraction level. Second, a recovery effect arises based on a precautionary argument for keeping a 

larger pre-collapse stock size to reduce the recovery time after the collapse is over. In condition 

(35) the recovery effect is captured by the term
'( )

'( ) ( )

F x

U g c x




. Amundsen and Bjørndal (1999) 

obtain ambiguous results when considering the relative strength of the two effects for fisheries. It 

is therefore unclear whether a precautionary stock should be build up prior to a temporary 

collapse of a fish stock. By investigating a temporary drought as in this paper the same two 

effects as in Amundsen and Bjørndal (1999) arise, but we show that the extinction effect 

dominates the recovery effect. Thus, even though a recovery effect exists we obtain that *x x  . 
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This can be explained by the fact that the recharge rate for groundwater is exogenous and cannot 

be affected by the decisions of a manager.  In the fisheries case considered by Amundsen and 

Bjørndal (1999), the natural growth (the recharge rate) is stock dependent and keeping an extra 

unit of the stock size will lead to more than an one unit of the resource in the future due to the 

natural growth.
14

 Thereby the recovery time is decreased. The strength of this effect may be so 

large that it dominates the extinction effect. In the groundwater case one unit of water not 

extracted now will only be equal to one unit of water in the future because the recharge is not 

affected by the extraction and thereby the stock size.    

 

6. A numerical example 

In this section the results of a numerical simulation of the three policies for groundwater 

management is presented. The three cases are: i) the open-access policy (Open-Access), ii) the 

optimal policy ignoring the threat of drought (Basic Solution) iii) the optimal policy including the 

threat of the drought (Optimal Solution). The assumed functional forms and parameter values are 

summarized in Appendix and the results of the simulations are presented in Figure I and Figure II.   

Figure I: Water extraction under various management policies.  

 

Figure II: Stock size of water under various management policies. 

 

Figure I shows that recovery time to normal extraction ( g ), perhaps somewhat surprisingly, is 

fastest under Open Access. Compared to Basic Solution, Open Access involves a larger 

immediate decrease in the extraction but it increases more quickly. This is partly reflecting that 

                                                 
14

 This argument require that the marginal growth is negative implying that x > xMSY. However, because c´(xt) < 0 this 
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the steady-state equilibrium stock size under Basic Solution is larger than under Open Access. 

The decrease in the water extraction under Optimal Solution is even more pronounced than under 

Open Access and, furthermore, water extraction under Optimal Solution recovers slowest of all 

policies. This is, partly, due to the fact that the stock of water prior to the drought is lower than 

under Basic Solution.  

 

Comparing the various policies Figure II shows that the steady-state stock size of water is highest 

under Basic Solution, intermediate under Optimal Policy and lowest under Open Access. 

Naturally, the size of the extraction under steady-state is identical in the three policy cases and 

equal to the aquifer recharge, g . The difference in stock size implies differences in the extraction 

costs of the opposite order and therefore the costs is lowest under the Basic Solution, intermediate 

under Optimal Policy and highest under Open Access.   

 

7. Discussion 

One important message from the analysis in this paper is that it is not necessarily true that 

keeping a steady-state equilibrium stock size of water with a low extraction cost is better than 

keeping a stock size with a high extraction cost. In fact, when a threat of a drought is included in 

an ex-ante maximization problem, the higher the probability of a drought (the failure rate, ) the 

smaller is the optimal steady-state stock size and the larger is the extraction cost. For a 

sufficiently high drought probability the stock size of water may in fact be close to the open-

access stock size implying the highest extraction cost. The reason for this result is that the failure 

                                                                                                                                                              
requirements is fulfilled (see Jensen and Vestergaard, 2002).  
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rate acts like an increment to the discount rate leading to heavier discounting and, therefore, a 

smaller steady-state stock size (see condition (37)). 

 

In the model in this paper we have assumed that the drought only hits once. This is of course an 

unrealistic assumption and it is natural to ask what will happen if droughts are allowed to be 

recurring events. An assumption of recurring droughts generally complicates matters a lot, and 

simplifying assumptions are needed in order to investigate the problem. Assume, as an example, 

that the stock of water is always fully recovered to the steady state level  before the next drought 

hits (all assumed to be of equal length  ).
15

 Since we are dealing with infinite time, the manager 

is, after each recovery period, faced with exactly the same optimization problem and thus arrives 

at exactly the same solution for the steady state equilibrium stock size in all time periods. Hence, 

the full ex ante optimization problem will be identical to the problem considered in section 5, 

except for the fact that the scrap value, )( txF , is replaced by an expected value of the maximum 

function for the future net benefit,   )( txFE , that takes account of all expected future drought 

periods. Thus, we have: 

  



0

)(

,
)()()(max dtexFEhxchU t

tttt
xh tt

      (38) 

subject to:  

(25) and (26). 

Denoting the optimal steady state equilibrium stock of water in this problem x̂ the modified 

golden rule becomes: 

                                                 
15

 This is not an innocent assumption since recovery time, as illustrated in Figure II, may be very long. 
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











)ˆ()('

))ˆ()('()ˆ('

)ˆ()('

)ˆ('

xcgU

xcgUxFE

xcgU

gxc
     (39) 

The structure of condition (38) is identical to condition (34) and, therefore, the steady-state 

equilibrium stock size will be smaller when the threat of the droughts is taken account of 

( *ˆ xx  ). However, note that )( txF >  )( txFE  because water is less abundant in a situation with 

many drought periods and therefore the expected maximum future net benefit of water extraction 

during a drought must be smaller.  

 

Two other assumptions behind the analysis in this paper are also useful to discuss. First, we 

assume constant economies of scale in extraction since the cost function is given as c(xt)ht. This 

assumption was used to proof that *x x . However, a natural question is whether this result 

generalizes to non-constant economics of scale in extraction. In relation to this Krishnamantha 

(2016) have recently shown that many results from the literature on stochastic recharge generalize 

to non-constant returns to scale in extraction and it seems that this conclusion also holds for the 

results in this paper.  Within our model the cost assumption affect x and *x in an identical way 

and, therefore,  it seems likely that *x x  also holds with non-constant economies of scale in 

extraction even though we have not proved this formally. Second, we only investigate a stock 

externality and a pumping cost externality in this paper but in reality other market failures arise 

for groundwater extraction. To investigate the implications of including other market failures 

consider, for example, the risk externality mentioned by Provencher and Burt (1993). The risk 

externality arises because risk-averse private extractors prefer a high groundwater stock size over 

a lower groundwater stock size due to a reduction in the risk. Taking account of such an 

externality will generally lead to higher optimal stock size.  
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8. Conclusions 

Three management policies for an aquifer confronted with the threat of a drought have been 

considered; i) an open-access policy, ii) an optimal policy not taking the threat of a drought into 

account iii) an optimal policy taking account of the threat of drought. We show that under policy 

i) the water resource automatically adjusts towards the pre-drought level according to a zero 

marginal private net benefit condition. This policy is, however, not optimal since stock 

externalities and pumping cost externalities are not taken into account. Instead an aquifer should 

be managed over time as an asset according to the intertemporal opportunity costs in terms of 

scarcity/ resource rents. The other two policies include such intertemporal aspects.   

 

In the first policy taking scarcity rents into account the threat of the drought is ignored and as 

under open-access the water resource is automatically adjusted towards the pre-drought level but 

now according to a zero marginal social net benefit condition. However, it is common to argue 

that the threat of a drought implies that a precautionary stock of water should be built-up prior to 

the drought to be drawn upon during the drought. A bit surprisingly we reach the opposite result 

since the optimal pre-drought stock size should be smaller than when the threat of the drought is 

ignored. This result implies that it is optimal to increase extraction of water during the period of 

normal precipitation before the drought starts. The intuition for this result is that two 

counteracting effects arise when the threat of a drought is taken into account. First, due to a 

temporary resource collapse current extraction is increased to capture a higher net benefit before 

the drought. This leads to a lower pre-drought stock size and this effect can be called an 

extinction effect. Second, because of an objective of fast resource recovery after the drought is 

over current extraction decreases and this can be called a recovery effect. In this paper we show 
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that for a groundwater resource the extinction effect always dominates the recovery effect because 

the recharge is exogenous and this leads to a a lower pre-drought stock size. This result holds 

even if the drought period extends into infinity such that the aquifer becomes a non-renewable 

resource at the date the drought hits. Furthermore, even if the drought makes all or a part of the 

water stock unusable for extraction by, for example, triggering a salination process, the result will 

hold. Under simplifying assumptions, it can also be shown that the result will hold for recurring 

droughts. Hence, the result that the optimal steady-state stock of water should be smaller when 

the threat of the drought is included seems to be general and robust.    
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Appendix 

 

Figure I and Figure II are based on numerical examples using a gross benefit function and a cost 

function, respectively, equal to  
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Optimal Solution 

,
~

ghht   for t  

 





















1

1

11 2
t

t

ttt
x

ha
hhh


 , for   t  

 























 2

1

1

1

1

11
)(

2
t

t

t

t

ttt
x

hga

x

ha
hhh


 , for  t  

xxt
~ , implicitly given by  

 



 )~()1(

)~('

)~(~ xag

xF

gaxx

gga
, for t ,  


t

tt hxx


~ , for   t , 


 
t

tt hgxx


 )( , for  t  

In the numerical examples we have used 400, 0,05, 100a g   and 10  . From these 

values we get that 5464,4000 *  xx  and 4800~ x .
16

 

                                                 
16

 It has not been possible to derive an analytic solution for )~(xF and )~(' xF . For this case we have 

considered a steady-state value 4800~ x . This value corresponds to 1 and 015764,0)~(' xF . For 

this case we have a net benefit equal to )~('0791667,0)~()1()~(')(' xFxagxcgU  . 
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Figure I: Water extraction under various management policies.  
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Figure II: Stock size of water under various management policies.  
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