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Abstract Motivated by computerized markets, this paper considers direct
exchange between matched agents, just two at a time. Each party holds a
”commodity vector,” and each seeks, whenever possible, a better holding.
Focus is on feasible, voluntary exchanges, driven only by (projected) differ-
ences in generalized gradients.
The paper plays down the importance of agents’ competence, experi-

ence and foresight. It also reduces the role of optimization, and it allows
non-smooth data. Yet it identifies reasonable conditions which suffi ce for
convergence to competitive equilibrium.
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1 Introduction

Bilateral exchange is the oldest mode of trade [3]. Though direct and non-
anonymous, it entails numerous problems - be it with bargaining, matching,
pricing, quantity, quality, or search [17], [21], [22]. In contrast, when medi-
ated by markets and money, indirect and anonymous transactions bring
numerous advantages [23]. It’s interesting therefore that new institutions
and platforms have emerged - many during recent decades - which combine
properties of both arrangements. To wit, most internet-based exchanges are
now direct yet anonymous [19]. Hybrid systems, which feature dealers and
specialists, may operate likewise. Their rationale remains the traditional
one: to translate latent demand-supply into realized prices and quantities.
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This paper models bilateral trades, undertaken time and again, between
diverse economic agents. Read as a tale of exchange, it’s easily dismissed as
reductionist mathematics because it ignores the cultural richness of trans-
actions.1

This notwithstanding, the model below emphasizes that most agents
lack some foresight or knowledge. Whence they adapt repeatedly - with
caution or moderation - to changing circumstances.2 In differential terms,
agents’perceptions of their planning problems are limited or localized - and
merely of first order. Those features are handicaps - and more so if choice be
constrained and objectives non-smooth. Nonetheless, suppose agents behave
as though they subscribe to selected parts of convex and set-valued analysis.
Specifically, suppose generalized gradients - and in particular, their feasible
components - guide exchanges. On such premises, might non-coordinated
agents, by themselves, make equilibrium prices emerge?
To address that question, Section 2 first considers just one direct ex-

change, somewhat modest and myopic, between merely two agents, recently
matched on a common platform. Section 3 shows, under rather weak as-
sumptions, that repeated exchanges may entail convergence to competitive
equilibrium. Section 4 outlines two examples, and Section 5 concludes.

2 Bilateral Exchange

Consider an economic agent i who actually owns a ”commodity vector”
xi ∈ Xi. The set Xi, which accounts for his constraints, is presumed closed
convex. It’s part of an ambient real Euclidean space X, endowed with inner
product 〈·, ·〉 and associated norm ‖·‖ .3 If agent i contends with xi, he
obtains payoff or transferable utility ui(xi), his criterion ui : X→ R being
concave.
For interpretation, construe i as a producer who would get revenue ui(xi)

from factor bundle xi. The components of xi could specify rights to use
various resources - say, water, fish quotas, pollution permits, or land; see
Example 1. Alternatively, xi could be an insurance policy or a financial
security; see Example 2. In either example, xi is a contract, written on
various goods, states or times. While the latter items might be perishable
or transient, the contract stands. In short, exchange need not proceed in
kind, but rather in user rights and payments. But plainly, the subsequent
analysis does not hinge upon any such specific interpretation of xi.
Suppose agent i meets - or is matched with - another economic agent

j. The latter holds some vector xj in a closed convex set Xj ⊆ X. He
1 In view of developments in experimental economics [24], this paper might be
construed as a mathematically inclined narrative of multi-agent, market-based
betterment.
2 Some theorists declare such agents boundedly rational. Quite often, however,
the real issue is rather agents’lack of experience or information.
3 X is finite-dimensional here, but results extend to Hilbert space settings.
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worships maximization of his concave payoff uj : X→ R over Xj . Most
likely, however, neither he nor his interlocutor is perfectly well versed in
optimization. And either might lack some foresight and information. For
such or other reasons, both proceed with caution and moderation. What
commodity transfer ∆ ∈ X, to i from j, might then be modest, yet desirable
and feasible for both parties?
Beginning with feasibility, suppose no quantity of any commodity be

created or destroyed during any feasible transfer. If the updated holding
x+1i of agent i differs from xi, let d := (x+1i − xi)/

∥∥x+1i − xi∥∥ denote the
corresponding direction of transferal - and σ :=

∥∥x+1i − xi∥∥ the associated
step-size. Consequently, with no loss of generality, after transfer ∆ = x+1i −
xi = σd, to i from j, the updated positions become

x+1i = xi + σd ∈ Xi and x+1j = xj − σd ∈ Xj , (1)

with σ ≥ 0 and ‖d‖ ≤ 1. Moreover, σd 6= 0 =⇒ ‖d‖ = 1. The first inclusion
in (1) implies that d belongs to the convex cone

Di(xi) := {r(χi − xi) | r ∈ R+ & χi ∈ Xi } =: R+(Xi − xi),

composed of all feasible directions for agent i at xi. Similarly, the second
inclusion in (1) tells that −d ∈ Dj(xj) = R+(Xj − xj). In short, the inter-
locutors must choose a direction

d ∈ Dij(xi, xj) := Di(xi) ∩ −Dj(xj).

This requirement on d explains the first part in the following proposition.
For the second part there, declare gi ∈ X a supergradient of ui at xi, and
write gi ∈ ∂ui(xi), iff

ui(χi) ≤ ui(xi) + 〈gi, χi − xi〉 for all χi ∈ X.

Further, at any xi ∈ Xi, let

Ni(xi) := {ni ∈ X | 〈ni, Xi − xi〉 ≤ 0}

denote the outward normal cone there.

Proposition 2.1 (On bilateral trade). When agents i, j own respectively
xi ∈ Xi and xj ∈ Xj, they cannot make a proper trade in case the cone
of feasible directions Dij(xi, xj) is degenerate. Moreover, they ought not
make any trade if

[∂ui(xi)−Ni(xi)] ∩ [∂uj(xj)−Nj(xj)] 6= ∅.

The reason is that (1) then yields ui(x
+1
i ) + uj(x

+1
j ) ≤ ui(xi) + uj(xj).

Proof. For the second statement, suppose gi ∈ ∂ui(xi), gj ∈ ∂uj(xj) and
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ni ∈ Ni(xi), nj ∈ Nj(xj) satisfy gi − ni = gj − nj . Together, x+1i = xi + σd
and d ∈ Di(xi) imply

ui(x
+1
i ) ≤ ui(xi) + σ 〈gi, d〉 ≤ ui(xi) + σ 〈gi, d〉 − σ 〈ni, d〉 .

Quite likewise, x+1j = xj + σ(−d) and −d ∈ Dj(xj) imply

uj(x
+1
j ) ≤ uj(xj)− σ 〈gj , d〉 ≤ uj(xj)− σ 〈gj , d〉+ σ 〈nj , d〉 .

Adding theses inequalities yields

ui(x
+1
i )+uj(x

+1
j ) ≤ ui(xi)+uj(xj)+σ 〈gi − ni, d〉−σ 〈gj − nj , d〉 = ui(xi)+uj(xj).

This completes the proof. �

For brevity and interpretation, call any

pi ∈ gi − ni with gi ∈ ∂ui(xi) and ni ∈ Ni(xi)

an essential margin or price used by agent i at xi. He applies it only there
to have an idiosyncratic local valuation of marginal transfers.4

For a backdrop, recall the Walrasian narrative about tâtonnement in
prices. It features some fictive resource custodian who adjusts common
prices so as finally to ensure material balances.5 Here, in contrast, materials
always balance, and differences in personal prices drive all deals.
Precisely to the point, Proposition 2.1 tells that agents i and j ought

not trade when they see equal prices pi = pj . This observation already indi-
cates possible avenues towards equilibrium, namely: after repeated bilateral
barters, some common price (vector) should emerge. Prior to such emer-
gence, before all personal prices coincide, if two agents - say, i and j - still
see no common price, what feasible transfer might suit both? Proposition
2.1 directs attention to instances where

Dij(xi, xj) 6= {0} and [∂ui(xi)−Ni(xi)]∩[∂uj(xj)−Nj(xj)] = ∅. (2)

To clarify that such a setting invites trade, use directional derivatives

u′i(xi; d) := lim
σ→0+

ui(xi + σd)− ui(xi)
σ

to define the steepest slope of the agents’joint payoff ui + uj :

Sij(xi, xj) := sup
{
u′i(xi; d) + u

′
j(xj ;−d) | d ∈ Dij(xi, xj) & ‖d‖ ≤ 1

}
.
(3)

4 Since a normal component ni ∈ Ni(xi) of any ”gradient” gi ∈ ∂ui(xi) points
right out of Xi, it’s subtracted to leave a personal price pi = gi − ni. If the
resulting pi belongs to clDi(xi), then 〈pi, Ni(xi)〉 ≤ 0, and 〈pi, d〉 ≥ 〈gi, d〉 for
each d ∈ Di(xi).
5 The Danzig-Wolfe planning procedure is of similar flavor [5].
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Can the said slope characterize situation (2)? Indeed, it can. Another de-
scription of Sij(xi, xj) helps to explain how. It invokes the closed tangent
cone Tij(xi, xj) := clDij(xi, xj) and the orthogonal projection

Pij [v] := argmin {‖v − t‖ | t ∈ Tij(xi, xj)}

onto that cone.6

Proposition 2.2 (The steepest slope as the norm of a projected gradi-
ent difference). The steepest slope (3) equals

Sij(xi, xj) = max
{
u′i(xi; d) + u

′
j(xj ;−d) | d ∈ Tij(xi, xj) & ‖d‖ ≤ 1

}
= min {‖Pij [gi − gj ]‖ | gi ∈ ∂ui(xi), gj ∈ ∂uj(xj)} .

(4)
Proof. Recall that a concave function f : X→ R∪{−∞} which is finite
near x ∈ X, has a non-empty compact convex superdifferential ∂f(x) and a
directional derivative

f ′(x; d) = lim
r→0+

f(x+ rd)− f(x)
r

= min {〈x∗, d〉 | x∗ ∈ ∂f(x)} ; (5)

see Theorem 2.87 in [15]. Since f ′(x; d) is concave in d, it’s continuous in
that variable. This continuity justifies two replacements in definition (3):
first, Tij(xi, xj) for Dij(xi, xj), and second, maximum for supremum. This
takes care of the leading equality in (4). The last one there follows from
Sij(xi, xj) =

max
d
min
gi,gj
{〈gi − gj , d〉 | gi ∈ ∂ui(xi), gj ∈ ∂uj(xj), d ∈ Tij(xi, xj) & ‖d‖ ≤ 1}

= min
gi,gj

max
d
{〈gi − gj , d〉 | gi ∈ ∂ui(xi), gj ∈ ∂uj(xj), d ∈ Tij(xi, xj) & ‖d‖ ≤ 1}

= min {‖Pij [gi − gj ]‖ | gi ∈ ∂ui(xi), gj ∈ ∂uj(xj)} .

In the preceding string, the first equality uses definition (3) and formula (5).
Since all sets ∂ui(xi), ∂uj(xj), and Tij(xi, xj)∩ (unit ball B) are non-empty
compact convex, the second equality follows from von Neumann’s minmax
theorem.
For the last equality, recall the following result of Moreau: Given a non-

empty closed convex cone T ⊆ X, any vector v ∈ X has a unique orthog-
onal decomposition v = t + n into a ”tangent” t ∈ T, and a ”normal”
n ∈ N := {n ∈ X | 〈n, T 〉 ≤ 0}, the two components being perpendicular:
〈t, n〉 = 0; see Thm. 3.8 in [14]. Since the cone clDij(xi, xj) is indeed closed
convex, let v = gi − gj and t = Pij [v] . Now the last equality in the above

6 I ought write Pij [·, xi, xj ] for the operator Pij [·] . The pair (xi, xj) is, however,
tacitly understood or clear from the context.
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string derives from the Cauchy-Schwartz inequality, using the Moreau de-
composition of v with respect to Tij(xi, xj). �

In the convenient case, when (xi, xj) ∈ int(Xi ×Xj),

Sij(xi, xj) = min {‖gi − gj‖ | gi ∈ ∂ui(xi), gj ∈ ∂uj(xj)} .

If moreover, ui and uj are differentiable at xi and xj respectively,Sij(xi, xj) =∥∥u′i(xi)− u′j(xj)∥∥. Thus, it’s expedient that some agent has a smooth objec-
tive or invariably makes an interior choice; see Theorem 3.2. Anyway, when
Sij(xi, xj) > 0, prospects appear promising for improvement of the joint
payoff ui(xi) + uj(xj). In fact, as seen next, the steepest slope is strictly
positive iff situation (2) prevails.

Proposition 2.3 (Positive slope and joint improvement). The steepest slope
has the alternative expression

Sij(xi, xj) = inf {‖pi − pj‖ | pi ∈ ∂ui(xi)−Ni(xi) & pj ∈ ∂uj(xj)−Nj(xj)} .
(6)

It follows that Sij is lower semicontinuous on Xi×Xj . Further,Sij(xi, xj) >
0 iff (2) prevails. In fact, Sij(xi, xj) = 0 iff xi, xj already

maximize ui(x
+1
i )+uj(x

+1
j ) s. t. (x

+1
i , x+1j ) ∈ Xi×Xj & x+1i +x

+1
j = xi+xj ,

(7)
or equivalently, iff

0 ∈ Pij [∂ui(xi)− ∂uj(xj)] .

Proof. Bauschke and Borwein [1] have already considered the case where
∂ui(xi) and ∂uj(xj) are singletons. For the more general result, define the
distance between two sets Ci, Cj ⊂ X by

dist[Ci, Cj ] := inf ‖Ci − Cj‖ = inf {‖ci − cj‖ | ci ∈ Ci, cj ∈ Cj } .

In these terms, the right hand side of (6) equals

dist[∂ui(xi)−Ni(xi), ∂uj(xj)−Nj(xj)]

= inf {dist[gi −Ni(xi), gj −Nj(xj)] | gi ∈ ∂ui(xi), gj ∈ ∂uj(xj)}

= min {‖Pij(gi − gj)‖ | gi ∈ ∂ui(xi), gj ∈ ∂uj(xj } .

For the attainment of the minimal distance note that ∂ui(xi) and ∂uj(xj
are compact convex. The lower semicontinuity of Sij derives from the fact
that the correspondences xi ⇒ ∂ui(xi), Ni(xi) are (upper) outer semicon-
tinuous [20]. �

In order to account for individual rationality, Feldman (1973) added the
constraints ui(x

+1
i ) ≥ ui(xi) and uj(x

+1
j ) ≥ uj(xj) to problem (7). Thus

he required that any outcome of bilateral barter be a core solution of a
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two-person cooperative game. However, to find such an outcome, the parties
need considerable information and skill - typically more than depicted in
their above portraits.
Feldman also presumed that each set Xi be the nonnegative orthant,

and that each ui come continuously differentiable. Like [10], this paper re-
laxes these restrictions.7 Unlike [10], no penalty functions are invoked, and
feasibility is maintained throughout. In addition, this paper matches players
by a different protocol, and it dispenses with some intrinsic assumptions of
[10], hard to verify.
I emphasize that some objective ui or uj could well be nonsmooth (see

Example 1) - and that orthogonal projection isn’t always easy. Consequently,
it can require some competence or effort of agents i, j to identify the steep-
est slope and an associated best direction. Assigning prominence to these
two objects doesn’t quite square with this paper’s chief purpose, namely:
to provide a low-complexity model of direct deals. Queries of this sort mo-
tivate a relaxed transaction, one for which (3) is realized at least up to a
fixed fraction ϕij ∈ (0, 1).8

Definition (Real transfer). Agents i, j make a real transfer if (1) holds
with d ∈ Dij(xi, xj), ‖d‖ = 1, and

∆uij := ui(x
+1
i ) + uj(x

+1
j )− ui(xi)− uj(xj) ≥ σϕijSij(xi, xj) > 0. (8)

Proposition 2.4 (On real transfers). Whenever (xi, xj) ∈ Xi × Xj and
Sij(xi, xj) > 0, agents i, j may indeed make a real transfer. Then, the
inequalities

ui(x
+1
i ) +mi > ui(xi) and uj(x

+1
j ) +mj > uj(xj)

are solvable with monetary side-payments mi, mj that sum to zero.

Proof. Let Sij(xi, xj ; d) := u′i(xi; d) + u′j(xj ;−d). By definition (3) there
exists d ∈ Dij(xi, xj), ‖d‖ ≤ 1, such that Sij(xi, xj ; d) ≥ ϕ

1/2
ij Sij(xi, xj).

The positive homogeneity of the directional derivatives ensures that the
agents may take ‖d‖ = 1. For small enough σ > 0, inclusions (1) hold and
∆uij ≥ σϕ1/2ij Sij(xi, xj ; d). Combining the last two inequalities, (8) follows
forthwith.
If only ui(x

+1
i ) > ui(xi), offer agent j money mj subject to uj(xj) −

uj(x
+1
j ) < mj < ui(x

+1
i ) − ui(xi). Thereafter debit agent i that same

amount. �

In short, modulo suitable side payments, real transfers generate strict Pareto

7 Except that if a feasible allocation (xi) is pairwise effi cient, the essential margin
∂ui(xi)−Ni(xi) should reduce to a singleton for at least one agent i; see Theorem
3.2.
8 The attending stepsize selection relates to the Goldstein rule.
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improvement. Money ”oils”the transaction machinery. Deals and incentives
are compatible. Nothing is said here, however, about how agents i, j divide
∆uij > 0. All issues about bargaining are deliberately left open [17], [22].

3 Convergence to Competitive Equilibrium

Decision theory and economics often make overly strong demands on agents’
competence and rationality. It’s therefore tempting to ask: Could adaptive
behavior partly serve as Ersatz for competence? May iterated market trans-
actions substitute for perfect rationality [13]? This section indicates positive
answers to both questions. It is concerned with emergence of a market clear-
ing price system.
Accommodated henceforth is a finite set I of economic agents. At the

outset, individual i ∈ I already holds some endowment ei ∈ Xi. A profile
x = (xi) ∈ XI is called an allocation iff

∑
i∈I xi =

∑
i∈I ei. It is feasible

moreover, iff xi ∈ Xi for each i.
To organize arguments, it’s expedient to view the exchange process un-

fold like an algorithm, fictitious or real, but affected by some protocol that
decides who will trade next with whom. By tacit assumption, no auctioneer
or referee comes to the fore - and no central planner, coordinator, or invis-
ible hand works backstage.

Repeated bilateral barters construed as an algorithm:
• Start with some feasible allocation.
• Invoke the protocol to activate or match two agents.
• If their steepest slope (3) is nil, invoke the protocol anew. Stop only when
all steepest slopes vanish.
• Otherwise, the active agents make a real transfer (8).
• Continue to invoke the protocol until convergence.

Thus, at discrete stages k = 0, 1, ..... two selected agents make a real trans-
fer.
Stopping is idealized and too stringent here. In practice, exchange termi-
nates, and the market settles, when all Sij(xi, xj) are negligible or so small
as to pass unnoticed.
Protocols can be manifold. There is room for random pairing, deliberate
search, asynchronous or parallel matching - and for different affi nities among
agents. Broadly, what imports is that each agent pair be activated repeat-
edly [9], [10], [12]. Here I shall only presume that periodically, the pair that
trades enjoys maximal steepest slope.

Proposition 3.1 (Exhaustion of two-sided trade options). Suppose that
periodically, agents with maximal steepest slope (3) make real transfers (8).
Also suppose trading agents i, j use a step-size σij(xi, xj) ≥ σij(xi, xj)
where σij is lower semicontinuous and positive wherever Sij(xi, xj) > 0.
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Then, all steepest slopes are nil at every accumulation point of the resulting
sequence.

Proof. Let A denote the set of all feasible allocations. Its subset

A0 := {x = (xi) ∈ A | all Sij(xi, xj) = 0} (9)

is of prime interest here. For x ∈ A, posit U(x) :=
∑
i∈I ui(xi). Let dij ∈

XI have all components 0 except i, j which feature unit vectors di and dj
respectively such that di+dj = 0.With reference to real transfers (8), define
ϕ := minij ϕij . At each profile x ∈ A�A0 let S(x) := maxi,j Sij(xi, xj)
and

B(x) :=
{
x+1 = x+ σijdij∈ A

∣∣ σij ≥ σij(xi, xj) and U(x+1) ≥ U(x) + σijϕS(x)} .
In contrast, when x ∈ A0, let B(x) = {x} . The point-to-set correspon-
dence B : A⇒ A, so defined, is closed outside A0. Moreover, if x /∈ A0

and x+1 ∈ B(x), then U(x+1) > U(x). The conclusion now follows from
Theorem 7.3.4. in [2] - an extension of the Zangwill convergence theorem. �

The conditions imposed on σij secure that trading agents i, j strictly im-
prove their payoffs when indeed they can. A chief issue remains, however.
Will agents reach the ”equilibrium”subset E ⊆ A0, composed of all feasible
allocations x = (xi) at which a common price prevails? Such a price must
belong to

∩i∈I [∂ui(xi)−Ni(xi)] 6= ∅. (10)

Alas, inclusion E ⊆ A0 can be strict:

Example 0 (Complete trade with no common price). Consider three agents
i ∈ {1, 2, 3} who exchange two goods, labelled s ∈ S = {1, 2}. Posit X = RS ,
write xis := xi(s), and use utility functions

u1(x1) = min {x11, 0} ,
u2(x2) = min {0, x22} ,
u3(x3) = min {x31, x32} .

Let each Xi = [− 1, 1]2. At xi = ei := (0, 0) each cone Ni(xi) is degenerate,
and the agents have superdifferentials

∂u1(x1) = [(1, 0), (0, 0)] , ∂u2(x2) = [(0, 0), (0, 1)] , ∂u3(x3) = [(1, 0), (0, 1)] .

Consequently, ∂ui(xi) ∩ ∂uj(xj) 6= ∅ for each agent pair i, j - that is, each
Sij(xi, xj) = 0 so that x ∈ A0 - but x /∈ E because ∩i∈I∂ui(xi) is empty.9 ♦

In an important exception, fitting trade of CO2-emission rights, X is one-
dimensional. Equality A0 = E then follows from Helly’s theorem in that

9 Allocation (0,−1), (−1, 0), (1, 1) is effi cient, and p = (0, 0) is an equilibrium
price.
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[∂ui(xi)−Ni(xi)] ∩ [∂uj(xj)−Nj(xj)] 6= ∅ ∀i, j =⇒ (10). Hence A0 = E.

The following main result synthesizes the preceding facts:

Theorem 3.2 (Convergence to competitive equilibrium). Let the set of
feasible allocations be bounded. Suppose that at every (xi) ∈ A0 (9), at least
one agent i has xi interior to Xi and ui Gâteaux differentiable at that point.
Then, under the hypotheses of Proposition 3.1, the exchange process accu-
mulates, and each limit point (xi) is an equilibrium profile in that demand
equals supply:

∑
i∈I xi =

∑
i∈I ei, and there is a common price p under

which each agent has maximized his total payoff :

ui(χi) + 〈p, ei − χi〉 ≤ ui(xi) + 〈p, ei − xi〉 ∀χi ∈ Xi ∀i ∈ I. (11)

Proof. Since the feasible set is compact, repeated trade leads to at least
one accumulation point x = (xi). Any such point is a feasible allocation.
Moreover, Proposition 3.1 implies that x ∈ A0 (9). By assumption, some
agent i has xi ∈ intXi and ∂ui(xi) reduced to a singleton. That is, the (local)
price for this agent equals his (unique) gradient u′i(xi) =: p ∈ ∂ui(xi) −
Ni(xi). Since Sij(xi, xj) = 0 for all j 6= i, Proposition 2.3 yields that

{p} = [∂ui(xi)−Ni(xi)] ∩ [∂uj(xj)−Ni(xj)] ∀ j 6= i,

hence p ∈ ∩i∈I [∂ui(xi)−Ni(xi)] . Finally, considering any agent i, the
inclusions gi ∈ ∂ui(xi), ni ∈ Ni(xi), χi ∈ Xi, and the relation p = gi − ni
imply

ui(χi) ≤ ui(xi)+〈gi, χi − xi〉 ≤ ui(xi)+〈gi − ni, χi − xi〉 = ui(xi)+〈p, χi − xi〉 ,

from which (11) follows forthwith. �

4 Two Examples

This section brings out two fairly general instances. One concerns linear pro-
duction games [18]; the other deals with trade of contingent claims under
asymmetric information [7]. In either instance the cone Di(xi) of feasible
directions is closed convex, and a best direction is easily found.

Example 1: Linear production economies [12]. Let

ui(xi) := sup {y∗i · y | xi ≥ Aiyi & yi ≥ 0} . (12)

Here the ”price-vector” y∗i and the ”activity plan” yi both belong to a
Euclidean space Yi. That space and X are equipped with standard vector
orders and inner products. The linear mapping Ai : Yi → X represents a
technology that consumes various production factors - of which the bundle
xi is available.10

10 Agent i′s feasible set Xi := u
−1
i (R).



Bilateral Exchange and Competitive Equilibrium 11

By linear programming duality, x∗i ∈ ∂ui(xi) iff x∗i solves the dual to
problem (12), namely:

inf
{
x∗i · xi

∣∣ ATi x∗i ≥ y∗i & x∗i ≥ 0
}
.

Moreover, the cone Di(xi) is closed convex and easily computable at any
feasible xi. Indeed, if X = RS for some finite list S of goods, the active index
ensemble

Si(xi) := {s ∈ S | [xi −Aiyi]s = 0 and yi is optimal in (12)}

identifies the binding constraints. Then Di(xi) equals the ”orthant” that
has R+ in each component s ∈ Si(xi), and the entire line R in all others.
Hence projection onto Dij(xi, xj) is easily executed.
In principle, extensions to non-linear production games are immediate.

Specifically, in analogy with (12), let the reduced utility

ui(xi) := sup {fi(yi) | xi ≥ gi(yi) & yi ∈ Yi }

stem from convex functions −fi : Yi → R, gi : Yi → X, and a closed con-
vex set Yi ⊆ Y. Then, to find supergradients x∗i ∈ ∂ui(xi) - alias Lagrange
multipliers - is usually harder. But again, to identify Di(xi) amounts only
to assess which constraints are binding.

Example 2: Risk Exchange [7], [8], [11]. In the setting of finance or
insurance, plagued by uncertainty about the future, let S denote a finite
full set of relevant, but mutually exclusive states s ∈ S. Posit X = RS as
the linear space of all contingent claims x : S → R to money.
Such a claim x ∈ X is adapted to a partition P of S, written x ∈ A(P), if

x is constant on each part P ∈ P. Agent i is information constrained iffXi ⊆
A(Pi) for some proper partition Pi of S. In particular, when Xi = A(Pi),
agent i can identify state s ex post only up to the part P (s) ∈ Pi which
contains s. Agents i, j have asymmetric information structures if Pi 6= Pj ;
see [7].
Of particular importance are instances where Xi = A(Pi) for each

i ∈ I. Then, since A(Pi) is a closed linear subspace, each direction d ∈
Dij(xi, xj) = Xi ∩ Xj must be constant on Pi ∪ Pj whenever the parts
Pi ∈ Pi and Pj ∈ Pj intersect.
For this reason, many agent pairs i, j may see few feasible barters of

mutual interest. In contrast, suppose a particular party j enjoys the most
fine-grained information, his state-space partition Pj being composed only
of singletons. SinceXj = X, presence of such a well-informed ”intermediary”
or broker j largely facilitates trade.
As to computation, suppose scenario s ∈ S comes up with objective

probability πs > 0,
∑
s∈S πs = 1. Endow X with probabilistic inner product

〈x∗, x〉 :=
∑
s∈S x

∗
sxsπs and corresponding norm. Then, on part P of a
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partition P, the projection Pr(x) of x ∈ X onto the subset X := A(P)
equals the conditional expectation

Pr(x)s =

∑
s∈P xsπs∑
s∈P πs

for each s ∈ P . ♦

5 Concluding Remarks

I have, with no excuse, accommodated agents of ”bounded rationality,”
each with a local, limited perspective. Chief concerns were with asymptotic
stability of the market. Complexity and convergence rates remain secondary
issues.11 No claims were made in that regard, and stages were not related
to real time.
As modelled above, repeated exchanges invite different interpretations.

One construes the process as pure fiction about (Marshallian) tâtonnement,
featuring trials and errors in quantities. In that optic, what comes on stage
is a hypothetical preludium, played out prior to any proper exchange. In a
second interpretation, the story just serves to motivate various slow, fully
decentralized algorithms. Both views are coherent and respectable, but I
share neither. Real agents do trade out of equilibrium.12

It deserves emphasis that most markets display a permanent bid-ask
spread no less than some monetary tick ε > 0. So, for practical purposes,
what replaces the commonality of prices (10) is the relaxed version

∩i∈I [∂ui(xi)−Ni(xi) + εB] 6= ∅,

B being the closed unit ball. Any p from the above intersection qualifies as
approximate equilibrium price. Upon allowing such ”fuzzy”prices, conver-
gence may prove fairly rapid - possibly finite.
I have also ignored that some constraints could be implicit. To wit, only

finite-valued functions ui were admitted here above. Some instances (viz.
Example 1) may feature effective domains u−1i (R) =: domui that are proper
subsets of X. When Xi is interior to domui, no problems emerge. Otherwise,
agent i must care that xi ∈ Xi ∩ domui. Such concerns motivate further
studies.
It also deserves mention that, in practice, barters and commodity trans-

fers could generate extra cost - or cause some inertia. Yet here, they were
implemented with no expense or hesitation. To mitigate this objectionable
feature, one could envisage that agent i invokes a regularized objective

ui(x) := max {ũi(x̃)− ai(x̃, x) | x̃ ∈ X} .
11 Distributed algorithms of block-coordinate projected gradient type are studied
in [16], [26] and [25].
12 Admittedly, perishable and durable goods are traded on different markets.
(Think about fresh fish versus fish quotas.) For perishables, one has long seen
double auctions, implemented and executed prior to consumption. Similarly, for
durables, there are platforms for exchange of property and rental rights.
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The underlying ũi : X→ R∪{−∞} reports his proper revenue whereas
ai : X× X→ R accounts for adjustment or transaction cost. Presumably,
ai(x̃, x) ≥ 0, and ai(x, x) = 0. Quite reasonably, the regularization could
also require that x̃ ∈ Xi.
Besides its appeal, regularization often brings an extra bonus: it’s apt

to smoothen the resulting objective. Specifically, provided ũi(x̃) − ai(x̃, x)
be strictly concave in x̃ and differentiable in x, the maximizing x̃ = x̃(x) is
unique, and - by Danskin’s envelope theorem [4] - the derived criterion ui
becomes differentiable with

u′i(x) = −
∂

∂x
ai(x̃, x).

Plainly, an agent who regularizes his objective, appears competent qua op-
timizer. But this feature does not square with how he was portrayed here.
So, although interesting, I have not considered the effects of iterated regu-
larizations. It merits mention though, that presence of merely one (smooth
or) regularizing agent, having a barrier function as criterion, largely con-
tributes towards convergence.
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