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Abstract

Many economic models and optimization problems generate (en-
dogenous) shadow prices - alias dual variables or Lagrange multipliers.
Frequently the “slopes” of resulting price curves - that is, multiplier
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matrices and, as a consequence, for the multiplier derivatives.
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1 Introduction

Comparative statics - alias sensitivity analysis - is crucial for economists
(and engineers). Chief techniques include system studies or simulations,
these fields providing most useful, often indispensable tools. If, however, the
objective (or performance criterion) stems from optimization, then duality
theory delivers derivative estimates with respect to parameter perturbations.
On such occasions, first-order information is already embodied in Lagrange
multipliers.

This feature is well-known, very convenient - and frequently fully satisfying.
Some situations call though, for one step further down the road: They require
second derivatives of the value (perturbation) function. To meet that request
amounts to produce derivatives of Lagrange multipliers. Such derivatives are
the main objects of this paper.

Our motivation stems from extremum problems of the following prototypical
sort: Choose x ∈ X to

optimize f(x, t) subject to h(x, t) = 0. (1)

Here the objective function f is real-valued, t ∈ T is a parameter, and h maps
X× T into E. All spaces X, T, E are finite-dimensional Euclidean with inner
products 〈·, ·〉. For the applications we have in mind, f does not depend on
t, and h(x, t) = t − H(x) with a function H from X into E = T. We then
choose x ∈ X to

optimize f(x) subject to H(x) = t. (2)

For the more general problem (1) consider the standard Lagrangian

L(x, t, λ) := f(x, t) + 〈λ, h(x, t)〉

and a Kuhn-Tucker (primal-dual) solution t 7→ (x(t), λ(t)) . Assuming differ-
entiability, we mainly want to assess d

dt
λ(t). For this purpose one could first

introduce the optimal value function

v(t) := optx {f(x, t) : h(x, t) = 0} ;

second, argue that in the specially structured case (2) one has λ(t) = v′(t)
- and finally, identify λ′(t) = v′′(t). This plan presumes however, that
v(·) be twice differentiable. In fact, quite often v isn’t even differentiable.
So, the said plan may encounter formidable hurdles. To mitigate these we
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posit that f, h be at least C2. Further, assume the constraint qualification
that Dxh(x, t) has full row rank at any optimal x. Plainly, problem (1) is
fairly tractable, featuring neither restricted decision sets nor inequality con-
straints.1 Nonetheless, its format is frequent and important enough to merit
separate treatment.

For motivation Section 2 brings out four examples, all of micro-economic or
game theoretic sort. In these, as in manifold other instances, the Jacobian
of the optimality conditions comes as a block-structured matrix. Section 3
therefore prepares the ground by inverting a suitable class of such matrices.
Section 4 applies that inversion to estimate parameter sensitivity of primal-
dual solutions in smooth, equality-constrained optimization, phrased in the
forms (1) and (2). We illustrate the results with an example.

While the findings in this paper may partly be seen as consequences of more
general results from the literature, our main concern is to connect these
second order sensitivity results with important applications from economics
and, thus, provide insights for audiences from both areas.

2 Motivation

Example 1: Risk aversion in the small [21]. Consider an economic agent
who maximizes his utility u(x) subject to Ax = t + ∆t. The matrix A has
merely one row, x is a column vector of appropriate size, t is a real constant,
and ∆t is a random variable, called a risk, with expectation E∆t = 0. The
objective u(·) is concave, whence so is the associated reduced function

U(t + ∆t) := sup {u(x) : Ax = t + ∆t} ,

emerging ex post, after ∆t has been unveiled. Since, by Jensen’s inequality,
EU(t + ∆t) ≤ U(t), the agent displays risk aversion ex ante. He is then
willing to pay a premium for avoiding uncertainty. Define that premium Π
by EU(t + ∆t) = U(t − Π). To estimate Π, assume differentiability, and
develop both sides of the last equation. Doing so yields

E
{
U(t) + U ′(t)∆t + U ′′(t)∆t2/2

} ≈ EU(t+∆t) = U(t−Π) ≈ U(t)−U ′(t)Π

and thereby

Π ≈ −U ′′(t)
U ′(t)

var(∆t)/2.

1Also, since f is finite-valued, no implicit constraints are embodied by means of infinite
penalties.
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The quotient −U ′′(t)/U ′(t) is called the Arrow-Pratt measure of absolute risk
aversion.2 Under appropriate conditions there exists a Lagrange multiplier
λ, satisfying U ′(t) = λ. Suppose the mapping t 7→ λ(t) so defined be differ-
entiable. Then

Π ≈ −λ′(t)
λ(t)

var(∆t)/2. (3)

Example 2: Production games [6]. Suppose individual i ∈ I, 2 ≤ |I| <
+∞, faces a “private production task” ti, construed as an obligation to sup-
ply a resource bundle (vector) ti in a finite-dimensional Euclidean space
E, equipped with inner product 〈·, ·〉 . If supplying xi ∈ E, he incurs cost
Ci(xi) ∈ R∪{+∞}. Members of any coalition S ⊆ I could pool their en-
dowments, coordinate their efforts, and thereby generate aggregate cost

CS(tS) := inf

{∑
i∈S

Ci(xi) :
∑
i∈S

xi = tS

}
, (4)

with tS :=
∑

i∈S ti. Construction (4), being crucial in nonlinear analysis, is
commonly called an inf-convolution; see [19]. A cost-sharing scheme (ci) ∈
RI resides in the core iff

Pareto efficient :
∑

i∈I ci = CI(tI), and
socially stable:

∑
i∈S ci ≤ CS(tS) for all S ⊂ I.

Suppose λ ∈ E is a Lagrange multiplier that relaxes the coupling constraint
in (4) when S = I. More precisely, suppose

inf
x

∑
i∈I

{Ci(xi) + 〈λ, ti − xi〉} ≥ CI(tI).

Let C∗
i (λ) := supxi

{〈λ, xi〉 − Ci(xi)} denote the Fenchel conjugate of Ci. The
profile

i 7→ ci := 〈λ, ti〉 − C∗
i (λ) (5)

then belongs to the core [6]. Existence of a Lagrange multiplier λ is ensured
if CI(·) is finite-valued in a neighborhood around tI and convex.

For a monopolistic setting of this story, suppose the agents are paral-
lel branches of an integrated concern, gaining aggregate revenue R(t) when

2This is a local measure. It emerged first in studies by de Finetti (1952), Arrow (1963)
and Pratt (1964). The agent at hand would regard a small, symmetric risk ∆t around
the specified level t as equivalent to retaining t less − 1

2var(∆t)U ′′(t)/U ′(t). The inverse
quantity T (t) := −U ′(t)/U

′′
(t) is called the risk tolerance [20].
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putting out total production volume t. To verify its second order optimal-
ity - or to test for possible risk aversion - the said concern would look at
R′′(t)−C

′′
I (t). Assume CI has a second Fréchet-derivative in a neighborhood

of t which is continuous and non-singular at that point. Then, if CI is convex,
by a result of Crouzeix [3],

C ′′
I (t) =

[
C∗′′

I (t∗)
]−1

where t∗ = λ = C ′
I(t) and C∗

I (t∗) =
∑

i∈I C∗
i (t∗). For generalization, see [22,

Theorem 13.21]. It follows, under quite similar assumptions on the Ci, that

C∗′′
I (t∗) =

∑
i∈I

C∗′′
i (t∗) =

∑
i∈I

[C ′′
i (xi)]

−1

where xi, i ∈ I, is the supposedly unique, feasible profile that yield total cost
CI(t). The upshot is that

λ′(t) = C ′′
I (t) =

[∑
i∈I

[C ′′
i (xi)]

−1

]−1

. (6)

For interpretation and analogy regard C ′′
i (xi) as the “resistance” in branch i,

its inverse being the corresponding “conductance” there. Formula (6) then
points to electrical engineering, saying that the conductance of a parallel
circuit equals the sum of conductances [5].

For a quite opposite, perfectly competitive setting, let i ∈ I be in-
dependent firms, each acting as a price-taking supplier in common product
markets. These markets clear at price p = λ = C ′(tI), and marginal costs
are then equal across the industry: p = C ′

i(xi) for each smooth-cost firm
i having optimal choice xi interior to the domain where Ci is finite-valued.
Let E = RG for a finite set G of goods. Fixing any two goods g, ḡ ∈ G the
demand elasticity of the first good with respect to the price of the second is
defined by

εgḡ := lim
∆pḡ→0

∆tg/tg
∆pḡ/pḡ

=
pḡ

tg

[
∂pḡ

∂tg

]−1

=
λḡ

tg

[
∂λḡ

∂tg

]−1

.

Important market games [23] obtain by rather putting profit (instead of cost)
at center stage. Specifically, if agent i ∈ I owns resources ti ∈ E, and enjoys
payoff πi : E→ R∪{−∞} , the characteristic form TU-game

S ⊆ I 7→ πS(tS) := sup

{∑
i∈S

πi(xi) :
∑
i∈S

xi = tS

}
, (7)
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has for each λ ∈ E, satisfying

sup
x

∑
i∈I

{πi(xi) + 〈λ, ti − xi〉} ≤ πI(tI),

a core solution (ci) ∈ RI defined by

ci := sup
xi

{πi(xi) + 〈λ, ti − xi〉} = 〈λ, ti〉+ (−πi)
∗(−λ).

That is,
∑

i∈S ci ≥ πS(tS) for all S ⊂ I with equality when S = I. Such
market games are vehicles in studies of welfare gains from trading natural
resources, be the latter fish quotas or pollution permits [8].

Example 3: Mutual insurance [12], [13]. Next relate the preceding
two examples as follows. Let πi(x) := EΠi(ω, xi(ω)) denote the expected
payoff of agent i when enjoying a state-contingent wealth profile ω ∈ Ω 7→
xi(ω) ∈ R. Here Ω is a finite state space, equipped with probability mea-
sure ω 7→ Pr(ω) > 0. Correspondingly, let E := RΩ have probabilistic inner
product 〈e, e′〉 :=

∑
ω∈Ω e(ω)e′(ω) Pr(ω). Agent i now owns a risk ti ∈ E. In

that optic a Lagrange multiplier λ ∈ E has twin properties: After state ω
has been unveiled it holds for

ci(ω) := sup
xi

{Πi(ω, xi) + λ(ω) [ti(ω)− xi]}

and

ΠS(ω, tS(ω)) := sup

{∑
i∈S

Πi(ω, xi) :
∑
i∈S

xi = tS(ω)

}
(8)

that
∑

i∈S ci(ω) ≥ ΠS(ω, tS(ω)) for all S ⊂ I with equality for S = I. Thus
the contingent payment profile [ci(ω)] ∈ RI belongs to the core of the ex
post, second-stage game defined by characteristic function (8).

Similarly, before ω is known the expected payments Eci belongs to the ex
ante game with characteristic function defined by (7). Together the scheme
(ci, Eci) might justly be called a mutual insurance treaty. Posit that each
Πi be state independent, this meaning that Πi(ω, ·) = Πi(·). Further, let
ti = t̄i + ∆ti with t̄i known, ∆ti random, and E∆ti = 0. Then the risk
tolerance of the mutual company at t̄I :=

∑
i∈I t̄i equals −λ/λ′ =

TI := −Π′
I

Π′′
I

= −
∑
i∈I

Π′
i

Π
′′
i

=
∑
i∈I

Ti,
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in compliance with formula (6).

Example 4: Playing the market [9]. Instead of agents i ∈ I all being
part of one corporation (or mutual), suppose now that these parties compete
in the following manner. At a first stage firm i independently commits to
supply the commodity vector ti ∈ E. By doing so it gains gross revenue
Ri(t) in the market, t := (ti) ∈ EI denoting the profile of commitments.
Production cost must be covered though. So, for the sake of efficiency and
fair sharing, after t has already been committed, firms collaborate and split
costs as described by (5). Consequently, the final payoff to firm i equals

πi(t) := Ri(t)− 〈λ, ti〉+ C∗
i (λ),

λ ∈ E being a Lagrange multiplier associated to the problem (4) when S =
I. Let t−i be short notation for (tj)j 6=i and declare the profile t a Nash
equilibrium if for each i

ti maximizes Ri(t−i, ·)− 〈λ, ·〉+ C∗
i (λ).

It is tacitly understood here that λ depends on tI =
∑

i∈I ti. We posit that
each party fully knows that feature. Assuming differentiability, the first order
optimality conditions for equilibrium read: for each i ∈ I,

∂

∂ti
Ri(t−i, ti) = λ + λ′(tI)ti + C∗′

i (λ)λ′(tI)

= λ + λ′(tI)ti + xiλ
′(tI),

xi being the supposedly unique choice in (4) when S = I. For λ′ one may
apply formula (6). Admittedly, the issues concerning existence and unique-
ness of such Nash equilibrium are intricate. For discussion of these issues see
[8], [10].

In the above examples problem (1) assumes the simpler form (2) for which
λ is commonly called a shadow price. Since our results about derivatives
of optimal value functions and Lagrange multipliers can be obtained for the
more general problem (1) without much additional effort, we will concentrate
on this setting and give the simplified formulas for instance (2) in the end.

As will be shown in Section 4 in more detail, the KKT conditions of problem
(1), namely:

Dxf(x, t) +
〈
λ,D>

x h(x, t)
〉

= 0
h(x, t) = 0
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generate a Jacobian with block form

(
A B
B> 0

)

featuring A = D2
xL(x, t, λ) and B> = Dxh(x, t). This simple observation

leads us to inquire next about inversion of such matrices.

3 The inverse of a structured block matrix

Definition 3.1 For an (n, n)−matrix A and an (n, k)−matrix B with k < n
the restriction of A to the kernel of B> is defined as

A|ker(B>) = V >AV ,

where V denotes any matrix whose columns form a basis of ker(B>).

Remark 3.2 In the following we will only be interested in properties of
A|ker(B>) which do not depend on the actual choice of V .

A proof for the well known part a) of the following theorem can be found
in [17]. Part b) was first shown in [15] under more general assumptions,
requiring an elaborate proof technique. In fact, there the Moore-Penrose
inverse of Q is given for the case that B does not possess full rank. In
contrast, here we give an elementary proof for a problem structure which is
adequate for the applications we have in mind.

Theorem 3.3 Let A be an (n, n)−matrix, let B be an (n, k)−matrix with
k < n, and define the block matrix

Q =

(
A B
B> 0

)
.

a) Q is nonsingular if and only if rank(B) = k and A|ker(B>) is nonsingu-
lar.

b) Let Q be nonsingular and let the columns of V form a basis of ker(B>).
Then, with

W = V (V >AV )−1V > and M = (B>B)−1B> ,
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the inverse of Q is given by

Q−1 =

(
W (I −WA) M>

M (I − AW ) M (AWA− A) M>

)
.

Proof of part b). By part a), we have rank(B) = k so that M is well
defined and V is an (n, n− k)−matrix with rank(V ) = n− k and V >B = 0.
Also by part a), the matrix V >AV is nonsingular, so that W is well defined,
too. Now consider the equation

(
A B
B> 0

)(
x
y

)
=

(
c
d

)

or, equivalently, the system

Ax + By = c (9)

B>x = d (10)

A basis for the homogeneous part of (10) is given by the columns of V , and it
is easily verified that B(B>B)−1d is a particular solution. Thus the solutions
of (10) are given as

x = V ξ + B(B>B)−1d (11)

with ξ ∈ Rn−k. Plugging (11) into (9) and multiplying by V > from the left
yields an equation which can be solved for ξ, and (11) yields

x = W c + (I −WA) M> d . (12)

After plugging (12) into (9) and multiplying by B> from the left one obtains
an equation that can be solved for y, so that finally one has

(
x
y

)
= Q−1

(
c
d

)

with the claimed matrix Q−1. •

Remark 3.4 In Theorem 3.3b), M is the Moore-Penrose inverse of B.

Remark 3.5 Given A and B, in Theorem 3.3b) the matrices W and, thus,
Q−1 do not depend on the actual choice of V . Note that we have WAW = W
and (AWA)|ker(B>) = A|ker(B>), so that A is a generalized inverse (shortly:
g-inverse [11]) of W , and W is a “restricted g-inverse” of A.
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Remark 3.6 In the case k = n the matrix V from Definition 3.1 cannot
be defined (formally, Aker(B>) is then a “(0, 0)−matrix”). The corresponding
result about nonsingularity and the inverse of Q is, however, easily derived:
Let A and B be (n, n)−matrices. Then the matrix

Q =

(
A B
B> 0

)

is non-singular if and only if B is nonsingular. In the latter case, the inverse
of Q is given by

Q−1 =

(
0 (B>)−1

B−1 −B−1A(B>)−1

)
.

Remark 3.7 Results about the inertia of a matrix structured like Q in The-
orem 3.3 can be found in [16].

4 Derivatives of Lagrange multipliers

Returning to problem (1), in this section we consider the parametric opti-
mization problem

P (t) : min
x

f(x, t) subject to h(x, t) = 0

with x ∈ X := Rn, t ∈ T := Rr, and functions f ∈ C2(Rn × Rr,R) and
h ∈ C2(Rn × Rr,E) with E = Rk and k < n. Let x̄ be a nondegenerate
critical point of P (t̄), that is, there exists some λ̄ ∈ Rk with

Dxf(x̄, t̄) + λ̄> Dxh(x̄, t̄) = 0 ,

the matrix Dxh(x̄, t̄) has full rank k, and the restricted Hessian D2
xL(x̄, t̄, λ̄)|ker(Dxh(x̄,t̄))

is nonsingular, where

L(x, t, λ) = f(x, t) + λ> h(x, t) .

Putting A = D2
xL(x̄, t̄, λ̄) and B = D>

x h(x̄, t̄), under these assumptions The-
orem 3.3a) implies the nonsingularity of the matrix

Q =

(
A B
B> 0

)
.
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We emphasize that nondegeneracy of a critical point is a weak assumption.
For example, when the defining functions are in general position, for parame-
terfree problems all critical points are nondegenerate, and for oneparametric
problems almost all critical points are nondegenerate ([14]). Moreover, if f is
strictly convex in x with D2

xf(x, t) positive definite for all x and t and if, in
addition, h is linear in x with Dxh(x, t) = A(t), then the only critical point
of P (t) (its global minimizer) is nondegenerate whenever A(t) has full rank.

As Q is the Jacobian with respect to (x, λ) of the system

D>
x f(x, t) + D>

x h(x, t) λ = 0

h(x, t) = 0

at (x̄, t̄, λ̄), the implicit function theorem and a moment of reflection show
that for t close to t̄ there exists a locally unique nondegenerate critical point
x(t) of P (t) with multiplier λ(t). In particular, the functions x(t) and λ(t)
satisfy the equations

D>
x f(x(t), t) + D>

x h(x(t), t) λ(t) = 0 (13)

h(x(t), t) = 0 (14)

for all t in a neighborhood of t̄.

Assuming that x̄ is even a nondegenerate local minimizer of P (t̄), it is not
hard to see that x(t) is a local minimizer of P (t) for t close to t̄. Hence the
(local) optimal value function of P (t) is

v(t) = f(x(t), t) .

In order to calculate the derivative of v observe that by (14) we may also
write

v(t) = f(x(t), t) + λ(t)>h(x(t), t)

which yields

v′(t) = DxL(x(t), t, λ(t)) x′(t) + λ′(t)>h(x(t), t) + DtL(x(t), t, λ(t))

= DtL(x(t), t, λ(t)) , (15)

where we used (13) and (14). For the second derivative of v at t̄ we obtain
by differentiation of (15)

v′′(t̄) = D2
t L(x̄, t̄, λ̄) +

(
DtD

>
x L(x̄, t̄, λ̄)

Dth(x̄, t̄)

)> (
x′(t̄)
λ′(t̄)

)
.
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As differentiation of (13) and (14) yields

Q

(
x′(t̄)
λ′(t̄)

)
+

(
DtD

>
x L(x̄, t̄, λ̄)

Dth(x̄, t̄)

)
= 0 ,

we arrive at the formula

v′′(t̄) = D2
t L(x̄, t̄, λ̄) −

(
DtD

>
x L(x̄, t̄, λ̄)

Dth(x̄, t̄)

)>
Q−1

(
DtD

>
x L(x̄, t̄, λ̄)

Dth(x̄, t̄)

)
,

(16)
where a so-called shift term is subtracted from the Hessian of L with respect
to t (cf. [17] for details).

With a matrix V whose columns form a basis of ker(B>) = ker(Dxh(x̄, t̄)) we
can now evoke Theorem 3.3 to state explicit formulas for these derivatives:

(
x′(t̄)

λ′(t̄)

)
= −Q−1

(
DtD

>
x L(x̄, t̄, λ̄)

Dth(x̄, t̄)

)

=

(
−W DtD

>
x L(x̄, t̄, λ̄)− (I −WA) M> Dth(x̄, t̄)

−M (I − AW ) DtD
>
x L(x̄, t̄, λ̄)−M (AWA− A) M> Dth(x̄, t̄)

)

with the notation from Theorem 3.3. More explicitly, the derivative of the
Lagrange multiplier is

λ′(t̄) =
(
Dxh̄D>

x h̄
)−1

Dxh̄
(
D2

xL̄V (V >D2
xL̄V )−1V > − I

)
DtD

>
x L̄ (17)

+
(
Dxh̄D>

x h̄
)−1

Dxh̄
(
D2

xL̄−D2
xL̄V (V >D2

xL̄V
)−1

V >D2
xL̄) D>

x h̄
(
Dxh̄D>

x h̄
)−1

Dth̄

where Dxh̄ stands for Dxh(x̄, t̄), etc.

Finally, we consider the special case of problem (2) with f independent of t
and h(x, t) = t−H(x). It is easily seen that (15) now yields the well-known
result

v′(t) = λ(t) . (18)

Moreover, (16) reduces to

v′′(t̄) = 0−
(

0
I

)>
Q−1

(
0
I

)
(19)

=
(
DxH̄D>

x H̄
)−1

DxH̄
(
D2

xL̄−D2
xL̄V (V >D2

xL̄V
)−1

V >D2
xL̄) D>

x H̄
(
DxH̄D>

x H̄
)−1

.

Clearly, a combination of (17) and (18) would yield the same result for v′′(t̄) =
λ′(t̄), as we proposed in the introduction.
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We illustrate the consequence of this formula for Example 1 from Section 2.

Example 1, continued: For the approximation of the premium Π we con-
sider the above problem P (t) with f(x, t) = −u(x), h(x, t) = t−H(x), and
H(x) = Ax. The assumptions that u is strictly concave with D2u(x) negative
definite for all x, and that the vector A does not vanish, are usually satisfied
in applications. Then for all t each critical point of P (t) is nondegenerate.
The corresponding Lagrange function is L(x, t, λ) = −u(x) + λ(t−Ax).

Let x̄ be a nondegenerate critical point of P (t̄). It is not hard to see that the
multiplier satisfies

λ(t̄) = −DūA>

AA> . (20)

Moreover, we have D2
xL(x, t, λ) = −D2u(x) so that, with a basis matrix V

of ker(A), formula (19) yields

λ′(t̄) =
1

(AA>)2
A (−D2ū + D2ūV (V >D2ūV )−1V >D2ū

)A>. (21)

Plugging (20) and (21) into (3) leads to

Π ≈ A (
D2ūV (V >D2ūV )−1V >D2ū−D2ū

)A>

AA> ·DūA> var(∆t)/2.

5 Final remarks

The approach to use the implicit function theorem in parametric optimization
goes back to [7]. We emphasize that it can also be carried out for parametric
optimization problems with finitely many inequality constraints, when strict
complementarity slackness is added to the nondegeneracy assumptions at a
critical point. Our results about the inverse of the Jacobian and the multi-
plier derivatives then remain unchanged if the set of equality constraints is
extended by the active inequality constraints.

Instead of differentiability of primal-dual solutions one might contend with
Lipschitz behavior. On that issue, see [2] for additive and linear perturba-
tions of convex problems, and [18] for general perturbations of nonconvex
problems.
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